当前位置:   article > 正文

深入NLTK:Python自然语言处理库高级教程_nltk.parse

nltk.parse

在前面的初级和中级教程中,我们了解了NLTK库中的基本和进阶功能,如词干提取、词形还原、n-gram模型和词云的绘制等。在本篇高级教程中,我们将深入探索NLTK的更多高级功能,包括句法解析、命名实体识别、情感分析以及文本分类。

一、句法解析

句法解析是自然语言处理中的一项重要任务,它的目的是识别出文本中词语之间的句法关系。在NLTK中,我们可以使用StanfordParser进行句法解析:

python
复制代码
from nltk.parse.stanford import StanfordParser

scp = StanfordParser(path_to_jar="path/to/stanford-parser.jar",
                     path_to_models_jar="path/to/stanford-parser-3.9.2-models.jar")

sentence = "The cat is chasing the mouse"
result = list(scp.raw_parse(sentence))

for tree in result:
    print(tree)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

二、命名实体识别

命名实体识别(NER)是识别出文本中特定类别(如人名、地名、组织名等)实体的过程。在NLTK中,我们可以使用ne_chunk函数进行命名实体识别:

python
复制代码
from nltk import word_tokenize, pos_tag, ne_chunk

sentence = "Mark and John are working at Google."
print(ne_chunk(pos_tag(word_tokenize(sentence))))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

三、情感分析

情感分析(Sentiment Analysis)是利用自然语言处理、文本分析和计算机语言学等技术来识别和提取文本中的主观信息。在NLTK中,我们可以使用VADER情感分析器进行情感分析:

python
复制代码
from nltk.sentiment.vader import SentimentIntensityAnalyzer

sid = SentimentIntensityAnalyzer()

text = "I love this car."
ss = sid.polarity_scores(text)

for k in ss:
    print('{0}: {1}, '.format(k, ss[k]), end='')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

四、文本分类

文本分类是自然语言处理的另一个重要任务,NLTK提供了多种机器学习算法供我们进行文本分类,如朴素贝叶斯分类器:

python
复制代码
from nltk.corpus import names
from nltk.classify import apply_features
import random

def gender_features(word):
    return {'last_letter': word[-1]}

names = ([(name, 'male') for name in names.words('male.txt')] +
         [(name, 'female') for name in names.words('female.txt')])
random.shuffle(names)

featuresets = [(gender_features(n), g) for (n, g) in names]
train_set = apply_features(gender_features, names[500:])
test_set = apply_features(gender_features, names[:500])

classifier = nltk.NaiveBayesClassifier.train(train_set)

print(classifier.classify(gender_features('Neo')))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

以上,我们介绍了NLTK库中的一些高级功能,包括句法解析、命名实体识别、情感分析以及文本分类等。通过深入学习和实践这些功能,我们可以进一步提升我们在自然语言处理领域的能力。

这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!

CSDN大礼包:全网最全《全套Python学习资料》免费分享
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/757767

推荐阅读
相关标签