赞
踩
这个模型在安卓对应的包:
repositories {
jcenter()
}
dependencies {
implementation ‘org.pytorch:pytorch_android_lite:1.9.0’
implementation ‘org.pytorch:pytorch_android_torchvision:1.9.0’
}
注:pytorch_android_lite版本和转化模型用的版本要一致,不一致就会报各种错误。
目前用这种方法有点问题,我采用的另一种方法。
转化代码如下:
import torch
import torch.utils.data.distributed
model_pth = ‘model_31_0.96.pth’ #模型的参数文件
mobile_pt =‘model.pt’ # 将模型保存为Android可以调用的文件
model = torch.load(model_pth)
model.eval() # 模型设为评估模式
device = torch.device(‘cpu’)
model.to(device)
input_tensor = torch.rand(1, 3, 224, 224) # 设定输入数据格式
mobile = torch.jit.trace(model, input_tensor) # 模型转化
mobile.save(mobile_pt) # 保存文件
对应的包:
//pytorch
implementation ‘org.pytorch:pytorch_android:1.10.0’
implementation ‘org.pytorch:pytorch_android_torchvision:1.10.0’
定义模型文件和转化后的文件路径。
load模型。这里要注意,如果保存模型
torch.save(model,‘models.pth’)
加载模型则是
model=torch.load(‘models.pth’)
如果保存模型是
torch.save(model.state_dict(),“models.pth”)
加载模型则是
model.load_state_dict(torch.load(‘models.pth’))
定义输入数据格式。
模型转化,然后再保存模型。
===============================================================
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。