当前位置:   article > 正文

【Graph Net】【专题系列】三、GNN/GCN代码实战_gnn milp代码

gnn milp代码

【Graph Net】【专题系列】三、GNN/GCN代码实战

目录

一、简介

二、代码

三、结果与讨论

四、展望

本专栏更多好文欢迎点击下方连接:

【Graph Net系列文章】


一、简介

        GNN(Graph Neural Network)和GCN(Graph Convolutional Network)都是基于图结构的神经网络模型。本文目标就是打代码基础,未用PyG,来扒一扒Graph Net两个基础算法的原理。直接上代码。图的相关代码可见仓库:GitHub - mapstory6788/Graph-Networks

二、代码

  1. import time
  2. import random
  3. import os
  4. import numpy as np
  5. import math
  6. from torch.nn.parameter import Parameter
  7. from torch.nn.modules.module import Module
  8. import torch
  9. import torch.nn as nn
  10. import torch.nn.functional as F
  11. import torch.optim as optim
  12. import scipy.sparse as sp
  13. #配置项
  14. class configs():
  15. def __init__(self):
  16. # Data
  17. self.data_path = r'E:\code\Graph\data'
  18. self.save_model_dir = r'\code\Graph'
  19. self.model_name = r'GCN' #GNN/GCN
  20. self.seed = 2023
  21. self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  22. self.batch_size = 64
  23. self.epoch = 200
  24. self.in_features = 1433 #core ~ feature:1433
  25. self.hidden_features = 16 # 隐层数量
  26. self.output_features = 8 # core~paper-point~ 8类
  27. self.learning_rate = 0.01
  28. self.dropout = 0.5
  29. self.istrain = True
  30. self.istest = True
  31. cfg = configs()
  32. def seed_everything(seed=2023):
  33. random.seed(seed)
  34. os.environ['PYTHONHASHSEED']=str(seed)
  35. np.random.seed(seed)
  36. torch.manual_seed(seed)
  37. seed_everything(seed = cfg.seed)
  38. #数据
  39. class Graph_Data_Loader():
  40. def __init__(self):
  41. self.adj, self.features, self.labels, self.idx_train, self.idx_val, self.idx_test = self.load_data()
  42. self.adj = self.adj.to(cfg.device)
  43. self.features = self.features.to(cfg.device)
  44. self.labels = self.labels.to(cfg.device)
  45. self.idx_train = self.idx_train.to(cfg.device)
  46. self.idx_val = self.idx_val.to(cfg.device)
  47. self.idx_test = self.idx_test.to(cfg.device)
  48. def load_data(self,path=cfg.data_path, dataset="cora"):
  49. """Load citation network dataset (cora only for now)"""
  50. print('Loading {} dataset...'.format(dataset))
  51. idx_features_labels = np.genfromtxt(os.path.join(path,dataset,dataset+'.content'),
  52. dtype=np.dtype(str))
  53. features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
  54. labels = self.encode_onehot(idx_features_labels[:, -1])
  55. # build graph
  56. idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
  57. idx_map = {j: i for i, j in enumerate(idx)}
  58. edges_unordered = np.genfromtxt(os.path.join(path,dataset,dataset+'.cites'),
  59. dtype=np.int32)
  60. edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
  61. dtype=np.int32).reshape(edges_unordered.shape)
  62. adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
  63. shape=(labels.shape[0], labels.shape[0]),
  64. dtype=np.float32)
  65. # build symmetric adjacency matrix
  66. adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
  67. features = self.normalize(features)
  68. adj = self.normalize(adj + sp.eye(adj.shape[0]))
  69. idx_train = range(140)
  70. idx_val = range(200, 500)
  71. idx_test = range(500, 1500)
  72. features = torch.FloatTensor(np.array(features.todense()))
  73. labels = torch.LongTensor(np.where(labels)[1])
  74. adj = self.sparse_mx_to_torch_sparse_tensor(adj)
  75. idx_train = torch.LongTensor(idx_train)
  76. idx_val = torch.LongTensor(idx_val)
  77. idx_test = torch.LongTensor(idx_test)
  78. return adj, features, labels, idx_train, idx_val, idx_test
  79. def encode_onehot(self,labels):
  80. classes = set(labels)
  81. classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
  82. enumerate(classes)}
  83. labels_onehot = np.array(list(map(classes_dict.get, labels)),
  84. dtype=np.int32)
  85. return labels_onehot
  86. def normalize(self,mx):
  87. """Row-normalize sparse matrix"""
  88. rowsum = np.array(mx.sum(1))
  89. r_inv = np.power(rowsum, -1).flatten()
  90. r_inv[np.isinf(r_inv)] = 0.
  91. r_mat_inv = sp.diags(r_inv)
  92. mx = r_mat_inv.dot(mx)
  93. return mx
  94. def sparse_mx_to_torch_sparse_tensor(self,sparse_mx):
  95. """Convert a scipy sparse matrix to a torch sparse tensor."""
  96. sparse_mx = sparse_mx.tocoo().astype(np.float32)
  97. indices = torch.from_numpy(
  98. np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
  99. values = torch.from_numpy(sparse_mx.data)
  100. shape = torch.Size(sparse_mx.shape)
  101. return torch.sparse.FloatTensor(indices, values, shape)
  102. #精度评价指标
  103. def accuracy(output, labels):
  104. preds = output.max(1)[1].type_as(labels)
  105. correct = preds.eq(labels).double()
  106. correct = correct.sum()
  107. return correct / len(labels)
  108. #模型
  109. #01-GNN
  110. class GNNLayer(nn.Module):
  111. def __init__(self, in_features, output_features):
  112. super(GNNLayer, self).__init__()
  113. self.linear = nn.Linear(in_features, output_features)
  114. def forward(self, adj_matrix, features):
  115. hidden_features = torch.matmul(adj_matrix, features) # GNN公式:H' = A * H
  116. hidden_features = self.linear(hidden_features) # 使用线性变换
  117. hidden_features = F.relu(hidden_features) # 使用ReLU作为激活函数
  118. return hidden_features
  119. class GNN(nn.Module):
  120. def __init__(self, in_features, hidden_features, output_features, num_layers=2):
  121. super(GNN, self).__init__()
  122. #输入维度in_features、隐藏层维度hidden_features、输出维度output_features、GNN的层数num_layers
  123. self.layers = nn.ModuleList(
  124. [GNNLayer(in_features, hidden_features) if i == 0 else GNNLayer(hidden_features, hidden_features) for i in
  125. range(num_layers)])
  126. self.output_layer = nn.Linear(hidden_features, output_features)
  127. def forward(self, adj_matrix, features):
  128. hidden_features = features
  129. for layer in self.layers:
  130. hidden_features = layer(adj_matrix, hidden_features)
  131. output = self.output_layer(hidden_features)
  132. return F.log_softmax(output,dim=1)
  133. #02-GCN
  134. class GraphConvolution(Module):
  135. """
  136. Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
  137. """
  138. def __init__(self, in_features, out_features, bias=True):
  139. super(GraphConvolution, self).__init__()
  140. self.in_features = in_features
  141. self.out_features = out_features
  142. self.weight = Parameter(torch.FloatTensor(in_features, out_features))
  143. if bias:
  144. self.bias = Parameter(torch.FloatTensor(out_features))
  145. else:
  146. self.register_parameter('bias', None)
  147. self.reset_parameters()
  148. def reset_parameters(self):
  149. stdv = 1. / math.sqrt(self.weight.size(1))
  150. self.weight.data.uniform_(-stdv, stdv)
  151. if self.bias is not None:
  152. self.bias.data.uniform_(-stdv, stdv)
  153. def forward(self, input, adj):
  154. support = torch.mm(input, self.weight)
  155. output = torch.spmm(adj, support)
  156. if self.bias is not None:
  157. return output + self.bias
  158. else:
  159. return output
  160. def __repr__(self):
  161. return self.__class__.__name__ + ' (' \
  162. + str(self.in_features) + ' -> ' \
  163. + str(self.out_features) + ')'
  164. class GCN(nn.Module):
  165. def __init__(self, in_features, hidden_features, output_features, dropout=cfg.dropout):
  166. super(GCN, self).__init__()
  167. self.gc1 = GraphConvolution(in_features, hidden_features)
  168. self.gc2 = GraphConvolution(hidden_features, output_features)
  169. self.dropout = dropout
  170. def forward(self, adj_matrix, features):
  171. x = F.relu(self.gc1(features, adj_matrix))
  172. x = F.dropout(x, self.dropout, training=self.training)
  173. x = self.gc2(x, adj_matrix)
  174. return F.log_softmax(x, dim=1)
  175. class graph_run():
  176. def train(self):
  177. t = time.time()
  178. #Create Train Processing
  179. all_data = Graph_Data_Loader()
  180. #创建一个模型
  181. model = eval(cfg.model_name)(in_features=cfg.in_features,
  182. hidden_features=cfg.hidden_features,
  183. output_features=cfg.output_features).to(cfg.device)
  184. optimizer = optim.Adam(model.parameters(),
  185. lr=cfg.learning_rate, weight_decay=5e-4)
  186. #Train
  187. model.train()
  188. for epoch in range(cfg.epoch):
  189. optimizer.zero_grad()
  190. output = model(all_data.adj, all_data.features)
  191. loss_train = F.nll_loss(output[all_data.idx_train], all_data.labels[all_data.idx_train])
  192. acc_train = accuracy(output[all_data.idx_train], all_data.labels[all_data.idx_train])
  193. loss_train.backward()
  194. optimizer.step()
  195. loss_val = F.nll_loss(output[all_data.idx_val], all_data.labels[all_data.idx_val])
  196. acc_val = accuracy(output[all_data.idx_val], all_data.labels[all_data.idx_val])
  197. print('Epoch: {:04d}'.format(epoch + 1),
  198. 'loss_train: {:.4f}'.format(loss_train.item()),
  199. 'acc_train: {:.4f}'.format(acc_train.item()),
  200. 'loss_val: {:.4f}'.format(loss_val.item()),
  201. 'acc_val: {:.4f}'.format(acc_val.item()),
  202. 'time: {:.4f}s'.format(time.time() - t))
  203. torch.save(model, os.path.join(cfg.save_model_dir, 'latest.pth')) # 模型保存
  204. def infer(self):
  205. #Create Test Processing
  206. all_data = Graph_Data_Loader()
  207. model_path = os.path.join(cfg.save_model_dir, 'latest.pth')
  208. model = torch.load(model_path, map_location=torch.device(cfg.device))
  209. model.eval()
  210. output = model(all_data.adj,all_data.features)
  211. loss_test = F.nll_loss(output[all_data.idx_test], all_data.labels[all_data.idx_test])
  212. acc_test = accuracy(output[all_data.idx_test], all_data.labels[all_data.idx_test])
  213. print("Test set results:",
  214. "loss= {:.4f}".format(loss_test.item()),
  215. "accuracy= {:.4f}".format(acc_test.item()))
  216. if __name__ == '__main__':
  217. mygraph = graph_run()
  218. if cfg.istrain == True:
  219. mygraph.train()
  220. if cfg.istest == True:
  221. mygraph.infer()

三、结果与讨论

        需要从网上下载cora数据集,数据组织形式如下图。

        测了下Params和GFLOPs,还是比较大的,发现若作为一个Net的Block还是需要优化的哈哈~

ModelParamsGFLOPs
GNN23.352K126.258M
ModelCora(/train/val/test)
GNN1.0000/0.7800/0.7620
GCN0.9714/0.7767/0.8290

四、展望

        未来可以考虑用PyG(PyTorch Geometric),毕竟PyG实现GAT等图网络、图的数据组织、加载会更加方便。Graph Net通常用可以用于属性数据的embedding模式,将属性数据可以作为一种补充特征加入Net去训练,看能不能发挥效能。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/833765
推荐阅读
相关标签
  

闽ICP备14008679号