当前位置:   article > 正文

记录些MySQL题集(14)

记录些MySQL题集(14)

MySQL 线上问题定位并解决

一、线上故障排查的思路与方向

在程序开发与运行过程中,出现Bug问题的几率无可避免,数据库出现问题一般会发生在下述几方面:

  • • ①撰写的SQL语句执行出错,俗称为业务代码Bug

  • • ②开发环境执行一切正常,线上偶发SQL执行缓慢的情况。

  • • ③线上部署MySQL的机器故障,如磁盘、内存、CPU100%MySQL自身故障等。

1.1、线上排查及其解决问题的思路

   相对而言,解决故障问题也好,处理性能瓶颈也罢,通常思路大致都是相同的,步骤如下:

  • • ①分析问题:根据理论知识+经验分析问题,判断问题可能出现的位置或可能引起问题的原因,将目标缩小到一定范围。

  • • ②排查问题:基于上一步的结果,从引发问题的“可疑性”角度出发,从高到低依次进行排查,进一步排除一些选项,将目标范围进一步缩小。

  • • ③定位问题:通过相关的监控数据的辅助,以更“细粒度”的手段,将引发问题的原因定位到精准位置。

  • • ④解决问题:判断到问题出现的具体位置以及引发的原因后,采取相关措施对问题加以解决。

  • • ⑤尝试最优解(非必须):将原有的问题解决后,在能力范围内,且环境允许的情况下,应该适当考虑问题的最优解(可以从性能、拓展性、并发等角度出发)。

当然,上述过程是针对特殊问题以及经验老道的开发者而言的,作为“新时代的程序构建者”,那当然得学会合理使用工具来帮助我们快速解决问题:

  • • ①摘取或复制问题的关键片段。

  • • ②打开百度或谷歌后粘贴搜索。

  • • ③观察返回结果中,选择标题与描述与自己问题较匹配的资料进入。

  • • ④多看几个后,根据其解决方案尝试解决问题。

  • • ⑤成功解决后皆大欢喜,尝试无果后“找人/问群”。

  • • ⑥“外力”无法解决问题时自己动手,根据之前的步骤依次排查解决。

1.2、线上排查的方向

数据库出现Bug的几率仅占一小部分,实际上一个业务系统中,各层面的节点都有可能存在一定的故障,但通常情况下来说,系统部署在线上出现问题,经过分析排查后,最终诱发问题的根本原因无非在于如下几点:

  • • 应用程序本身导致的问题

    • • 程序内部频繁触发GC,造成系统出现长时间停顿,导致客户端堆积大量请求。

    • • JVM参数配置不合理,导致线上运行失控,如堆内存、各内存区域太小等。

    • • Java程序代码存在缺陷,导致线上运行出现Bug,如死锁/内存泄漏、溢出等。

    • • 程序内部资源使用不合理,导致出现问题,如线程/DB连接/网络连接/堆外内存等。

  • • 上下游内部系统导致的问题

    • • 上游服务出现并发情况,导致当前程序请求量急剧增加,从而引发问题拖垮系统。

    • • 下游服务出现问题,导致当前程序堆积大量请求拖垮系统,如Redis宕机/DB阻塞等。

  • • 程序所部署的机器本身导致的问题

    • • 服务器机房网络出现问题,导致网络出现阻塞、当前程序假死等故障。

    • • 服务器中因其他程序原因、硬件问题、环境因素(如断电)等原因导致系统不可用。

    • • 服务器因遭到入侵导致Java程序受到影响,如木马病毒/矿机、劫持脚本等。

  • • 第三方的RPC远程调用导致的问题

    • • 作为被调用者提供给第三方调用,第三方流量突增,导致当前程序负载过重出现问题。

    • • 作为调用者调用第三方,但因第三方出现问题,引发雪崩问题而造成当前程序崩溃。

虽然上述中没有将所有可能会发生问题的位置写到,但总的来说,发生问题排查时,也就是这几个大的方向,先将发生问题的大体定位,然后再逐步推导出具体问题的位置,从而加以解决。

二、SQL语句执行出错排查

作为一个程序员,对MySQL数据库而言,接触最多的就是SQL语句的撰写,和写业务代码时一样,写代码时会碰到异常、错误,而写SQL时同样如此,比如:

  1. ERROR 1064 (42000): You have an error in your SQL syntax; 
  2.     check the manual that corresponds to your MySQL server version 
  3.         for the right syntax to use near 'xxxxxxx' at line 1

MySQL的错误信息会由三部分组成:

  • • ErrorCode:错误码,上述错误信息中的1064

  • • SQLStateSQL状态,也就是前面信息中的42000

  • • ErrorInfo:错误详情,后面跟的一大长串描述则是具体的错误详情。

当在执行SQL时出现问题,一般都会抛出对应的错误信息,拿到了这些错误信息之后,其实解决的办法就比较简单了,首先可以参考具体的错误详情,如果英语好的小伙伴可以直接尝试阅读,如果英语不好的小伙伴可以借助一些翻译工具来转换成中文,比如上述的错误信息,从其给出的错误详情大致能够阅读出原因:

原文:You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'xxxxxxx' at line 1
翻译:您的SQL语法有错误;请查看与MySQL-Server版本对应的手册,以了解在第1“xxxxxxx”附近正确语法的使用方式。

从这段错误提示中可以明显得知:目前咱们执行SQL时遇到了一个语法错误,也就是SQL写错了,具体位置是第一行的'xxxxxxx'位置,所以如果要解决这个问题就很简单了,找到第一行'xxxxxxx'位置,观察后把SQL改对即可。

上述这种方式适用于绝大部分SQL报错的情况,如果遇到一个少见的错误,自己也无法从给出的错误信息中定位问题,这时最好的解决办法并不是自己研究,或者去问他人,而是直接百度/谷歌,作为一位合格的开发者,必须要能够熟练运用搜索引擎来解决问题,开发过程中遇到的80%问题都可以直接从网上找到答案,所以与其自己花精力去思考,或者去麻烦别人解决,不如直接在网上找现成的解决方案。

SQL执行报错,在网上要找这类问题的解决方案其实十分简单,毕竟 MySQL内部对每种不同的错误都有对应的错误码,所以出现错误信息时,先直接去搜索对应的错误码即可,如下:

图片

百度

基本上百度后就能出现对应的错误码详解,以及错误码出现后又该如何解决,这时我们需要做的仅仅只是点进去跟着操作即可,这种方法也是最省事省力的方案。

确实网上的资源无法提供,这时只能自行手动介入排查,最经典也是最有效的排查方法,即是人.肉排查大法。

三、MySQL线上慢查询语句排查

有些SQL可能在开发环境没有任何问题,但放到线上时就会出现偶发式执行耗时较长的情况,所以这类情况就只能真正在线上环境才能测出来,尤其是一些不支持灰度发布的中小企业,也只能放到线上测才能发现问题。

对于排查慢查询SQL而言,首先要做到的就是定位哪些SQL执行时较为耗时,但总不能把所有的SQL都做一遍监控吧?这样未免太影响性能了,其实对于这点咱们无需担心,在MySQL内部实际上早已提供了相关支持,也就是慢查询日志,在项目上线之前手动开启一下慢查询日志即可。

但开启慢查询日志需要配置两个关键参数:

  • • slow_query_log:取值为on、off,默认为off关闭,项目上线前需要手动开启。

  • • long_query_time:指定记录慢查询日志的阈值,单位是秒,要指定更细粒度可以用小数表示。

重点是第二个参数,这个慢查询阈值并没有固定的标准,不同的业务系统取值也并不相同,为啥这样说呢?举个例子:现在有两个系统:

  • • 一个是报表系统,主要负责对账、跑批、统计分析、报表导出....等工作。

  • • 另一个系统则是一个门户网站,与用户直接交互,主要负责处理用户请求。

以上述这两个系统为例,将两个系统的慢查询日志阈值都设置为1s合适吗?这显然并不合适,因为报表系统中的大量操作基本上都会超出这个时间,毕竟涉及了大量的逻辑处理和运算的耗时工作。那如果将阈值调大呢?比如设置成5s合适吗?也不合适,因为这样可能会监控到报表系统的慢查询SQL,但却无法监控到门户网站的慢查询语句,毕竟在门户网站中超过800ms就算比较慢了。

因此从上述这个案例中可明显感受出来,对于慢查询日志的阈值分配,是一个比较讲究的技术活,设小了可能会收集到大量执行并不慢的SQL语句,设大了又可能造成真正的慢查询语句无法被记录下来。那么具体该如何设置合理的大小呢?

如果想要每次MySQL重启时,慢查询的配置都生效,请记住不用使用set的方式在线修改,而是要将对应的参数配置到MySQL的配置文件中。

3.1、查看慢查询日志

查看慢查询日志的方式,一般如果你的项目配备了完善的监控系统,通常情况下会自动去读取磁盘中的慢查询日志,然后可直接通过监控系统的大屏来观察。但如若未具备完善的监控系统,也可以通过cat这类命令去查看本地的日志文件,慢查询日志的磁盘文件默认位于MySQL的安装目录下,也可以通过slow_query_log_file=/xxx/xxx/xx.log的方式去手动指定。

下面举个例子来做实验,这里我可能会将慢查询阈值设置的很小,主要是为了观察到慢查询日志,因此诸位请不要纠结,实际的慢查询阈值还是需要根据业务来进行合理配置,如下:

  1. -- 在MySQL客户端中直接使用 set 的方式修改
  2. -- 先开启慢查询日志
  3. setglobal slow_query_log =on;
  4. -- 再查询默认的慢查询阈值(默认为10秒)
  5. show variables like'long_query_time';
  6. +-----------------+-----------+
  7. |Variable_name|Value|
  8. +-----------------+-----------+
  9. | long_query_time |10.000000|
  10. +-----------------+-----------+
  11. -- 手动修改慢查询阈值(设置为10ms)
  12. setglobal long_query_time =0.01;
  13. -- 由于前面使用了global关键字设置了全局生效,因此需要重新连接
  14. quit
  15. -- 重连后再次查询慢查询阈值(已生效)
  16. show variables like'long_query_time';
  17. +-----------------+----------+
  18. |Variable_name|Value|
  19. +-----------------+----------+
  20. | long_query_time |0.010000|
  21. +-----------------+----------+

上面这组配置的含义是:当有查询语句的执行时长超过10msMySQL就会自动将其记录到慢查询日志中:

  1. -- 一条普普通通的子查询语句
  2. select
  3. *
  4. from
  5.     zz_users 
  6. where
  7.     user_id in(
  8. select user_id from zz_users where user_id <5
  9. )
  10. and
  11.     register_time < now();
  12. +---------+-----------+----------+----------+---------------------+
  13. | user_id | user_name | user_sex | password | register_time       |
  14. +---------+-----------+----------+----------+---------------------+
  15. |1|熊猫|女|6666|2022-08-1415:22:01|
  16. |2|竹子|男|1234|2022-09-1416:17:44|
  17. |3|子竹|男|4321|2022-09-1607:42:21|
  18. |4|黑熊|男|8888|2022-09-1723:48:29|
  19. +---------+-----------+----------+----------+---------------------+
  20. 4rowsinset(0.015 sec)

从上述的执行结果来看,其实这里执行的耗时为15ms,已经超出了咱们设定的10ms,那接着一起去看看磁盘中的慢查询日志吧!如果你不清楚你本地慢查询日志文件的位置,可以通过下述命令查询:

  • • show variables like 'slow_query_log_file';

此时找到本地的慢查询日志,接着打开它来瞧瞧其中是否有数据呢?如下:

图片

慢查询日志

因为我是在Windows系统,所以可以直接用记事本打开,如果你是Linux系统,记得使用cat命令即可。从上面日志中记录的查询信息来看,可以得知几个信息:

  • • 执行慢查询SQL的用户:root,登录IP为:localhost[127.0.0.1]

  • • 慢查询执行的具体耗时为:0.014960s,锁等待时间为0s

  • • 本次SQL执行后的结果集为4行数据,累计扫描6行数据。

  • • 本次慢查询发生在db_zhuzi这个库中,发生时间为1667466932(2022-11-03 17:15:32)

  • • 最后一行为具体的慢查询SQL语句。

3.2、排查SQL执行缓慢问题

读取慢查询日志后,能够让咱们精准定位到发生慢查询SQL的用户、客户端机器、执行耗时、锁阻塞耗时、结果集行数、扫描行数、发生的库和时间、以及具体的慢查询SQL语句,得到了这些信息后,其实排查引起慢查询的原因就比较简单了。步骤如下:

  • • 先根据本地慢查询日志文件中的记录,得到具体慢查询SQL执行的相关信息。

  • • 查看Look_time的耗时,判断本次执行缓慢,是不是由于并发事务导致的长时间阻塞。

  • • 如果不是,则通过explain索引分析工具,先判断索引的使用情况。

一般来说在开发环境中没有问题的SQL语句,放到线上环境出现执行缓慢的情况,多半原因是由于并发事务抢占锁,造成当前事务长时间无法获取锁资源,因此导致当前事务执行的SQL出现超时,这种情况下需要去定位操作相同行数据的大事务,一般长时间的阻塞是由于大事务持有锁导致的,找出对应的大事务并拆解或优化掉即可。

通过show status like 'innodb_row_lock_%';命令可以查询MySQL整体的锁状态,如下:

图片

锁性能表现

  • • Innodb_row_lock_current_waits:当前正在阻塞等待锁的事务数量。

  • • Innodb_row_lock_timeMySQL启动到现在,所有事务总共阻塞等待的总时长。

  • • Innodb_row_lock_time_avg:平均每次事务阻塞等待锁时,其平均阻塞时长。

  • • Innodb_row_lock_time_maxMySQL启动至今,最长的一次阻塞时间。

  • • Innodb_row_lock_waitsMySQL启动到现在,所有事务总共阻塞等待的总次数。

如果你在慢查询日志中,看到了大量由于锁阻塞导致执行超出慢查询阈值的SQL,那可以执行上述这条指令看看整个MySQL的锁状态,如果这些值都比较大时,就意味着你当前这个MySQL节点承载的并发压力过高,此时就急需进行《MySQL架构优化》。


但如果慢查询不是因为锁阻塞导致的,那此时又该如何处理呢?不是锁阻塞导致的,那绝对是SQL执行时本身出现了问题,这时可以先用explain工具分析SQL的执行计划,查看索引的使用情况,找到那些执行计划中扫描行数过多、type=index、allSQL语句,尝试优化掉即可(但是要注意:如果是8.0以下版本的MySQL,在使用explain工具分析前,一定要记得设置SQL_NO_CACHE,否则会从查询缓存中读取数据)。

不过explain工具在分析复杂SQL时,生成的执行计划可能会比较多,如果你对该工具用的比较熟悉,那可以直接分析生成的执行计划,但这种方式略微会有些难以观测,最好的办法则是之前提到的人肉排查大法。

对于一些较为复杂或庞大的业务需求,可以采取拆分法去逐步实现,最后组装所有的子语句,最终推导出符合业务需求的SQL语句。

所谓的人.肉排查法,也就是将一条复杂的查询语句,拆解成一条条的子语句,毕竟咱们除开要学会拆解需求外,还得掌握拆解复杂SQL的能力,拆解后可以对每条子语句使用explain工具分析,这样就能够精准定位到:复杂语句中导致耗时较长的具体子语句,最后将这条子语句优化后重新组装即可。

拆解排除法还有一个最大的好处是:有时组成复杂SQL的每条子语句都不存在问题,也就是每条子语句的执行效率都挺不错的,但是拼到一起之后就会出现执行缓慢的现象,这时拆解后就可以一步步的将每条子语句组装回去,每组装一条子语句都可以用explain工具分析一次,这样也能够精准定位到是由于那条子语句组合之后导致执行缓慢的,然后进行对应优化即可。

按照上述的方法论,基本上能够让你解除掉所有的慢查询问题,但在之前的SQL优化篇也说到过:如果是由于业务本身就会导致SQL检索数据量较大,那这种情况是无法进行优化的,此时就只能从业务层面着手解决。

最后再说一下为什么这种方法被称之为人.肉排查大法,这个名字是由战争时期的一个场景演变过来的,战争时期基本上都会有地雷战,也就是守的一方会布置地雷去阻碍攻方的进程,如果攻方停下来让地雷兵用仪器探测,然后拆除掉地雷,这个过程会十分耗时,如果这样做就会让守方达成拖延进程的目的。

这种情况下攻方为了进程不被耽误,通常会选择让人直接飞速的跑过去,也就是靠人直接踩雷的行为去引爆地雷,从而做到排雷的效果,以便于后方大部队的进程不会收到影响,而这个方法则被称为人.肉排雷法。

同样的思想换到编程中也相同,目前出现了问题,但是由于组成SQL的子语句过多,无法精准定位具体的问题出现原因,则会挨个拆解后分析,最终得出引出问题的SQL语句,这个思想在解决SQL执行报错时也额外好用,毕竟如果无法通过外力去排查问题时,这种方式就成了上上策,虽然看起来很傻,但却非常非常实用。也包括在Java中也可以去通过System.out.println("...");不断输出的方式排查问题,其思想与之相同。

四、MySQL线上机器故障排查

MySQL数据库线上的机器故障主要分为两方面,一方面是由于MySQL自身引起的问题,比如连接异常、死锁问题等,另一方面则是部署MySQL的服务器硬件文件,如磁盘、CPU100%等现象,对于不同的故障问题排查手段也不同,下面将展开聊一聊常见的线上故障及解决方案。

4.1、客户端连接异常

客户端连接异常也是一种较为常见的故障,这里有可能是因为多方面原因导致的,如下:

  • • ①数据库总体的现有连接数,超出了MySQL中的最大连接数,此时再出现新连接时会出异常。

  • • ②客户端数据库连接池与MySQL版本不匹配,或超时时间过小,也可能导致出现连接中断。

  • • ③MySQL、Java程序所部署的机器不位于同一个网段,两台机器之间网络存在通信故障。

  • • ④部署MySQL的机器资源被耗尽,如CPU、硬盘过高,导致MySQL没有资源分配给新连接。

当数据库出现连接异常时,基本上就是因为上述四种原因导致的,对于第一二种情况比较简单,基本上问题出在数据库和客户端连接池的配置上面,首先排查一下两者的参数,然后适当调整参数即可。

  • • ③MySQL、Java程序所部署的机器不位于同一个网段,两台机器之间网络存在通信故障。

这种情况,问题一般都出在交换机上面,由于Java程序和数据库两者不在同一个网段,所以相互之间通信需要利用交换机来完成,但默认情况下,交换机和防火墙一般会认为时间超过3~5分钟的连接是不正常的,因此就会中断相应的连接,而有些低版本的数据库连接池,如Druid只会在获取连接时检测连接是否有效,此时就会出现一个问题:

交换机把两个网段之间的长连接kill了,但是Druid因为只在最开始检测了一次,后续不会继续检测连接是否有效,所以会认为获取连接后是一直有效的,最终就导致了数据库连接出现异常(后续高版本的Druid修复了该问题,可以配置间隔一段时间检测一次连接)。

一般如果是由于网络导致出现连接异常,通常排查方向如下:

  • • 检测防火墙与安全组的端口是否开放,或与外网机器是否做了端口映射。

  • • 检查部署MySQL的服务器白名单,以及登录的用户IP限制,可能是IP不在白名单范围内。

  • • 如果整个系统各节点部署的网段不同,检查各网段之间交换机的连接超时时间是多少。

  • • 检查不同网段之间的网络带宽大小,以及具体的带宽使用情况,有时因带宽占满也会出现问题。

  • • 如果用了MyCat、MySQL-Proxy这类代理中间件,记得检查中间件的白名单、超时时间配置。

一般来说上述各方面都不存在问题,基本上连接异常应该不是由于网络导致的问题,要做更为细致的排查,可以在请求链路的各节点上,使用网络抓包工具,抓取对应的网络包,看看网络包是否能够抵达每个节点,如果每个节点的出入站都正常,此时就可以排除掉网络方面的原因。

  • • ④部署MySQL的机器资源被耗尽,如CPU、硬盘过高,导致MySQL没有资源分配给新连接。

这种情况更为特殊,网络正常、连接数未满、连接未超时、数据库和客户端连接池配置正常....,在一切正常的情况下,有时候照样出现连接不上MySQL的情况咋整呢?在这种情况下基本上会陷入僵局,这时你可以去查一下部署MySQL服务的机器,其硬件的使用情况,如CPU、内存、磁盘等,如果其中一项达到了100%,这时就能够确定问题了。

因为数据库连接的本质,在MySQL内部是一条条的工作线程,要牢记的一点是:操作系统在创建一条线程时,都需要为其分配相关的资源,如果一个客户端尝试与数据库建立新的连接时,此刻正好有一个数据库连接在执行某个操作,导致CPU被打满,这时就会由于没有资源来创建新的线程,因此会向客户端直接返回连接异常的信息。

如果出现这样的问题,就需要先找到导致资源耗尽的连接/线程,然后找到它当时正在执行的SQL语句,最后需要优化相应的SQL语句后才能彻底根治问题。

4.2、MySQL死锁频发

对于死锁问题,MySQL内部其实会默认开启死锁检测算法,当运行期间出现死锁问题时,会主动介入并解除死锁,但要记住:虽然数据库能够主动介入解除死锁问题,但这种方法治标不治本!为啥治标不治本呢?因为死锁现象是由于业务不合理造成的,能出现一次死锁问题,自然后续也可能会多次出现,因此优化业务才是最好的选择,这样才能根治死锁问题。

从业务上解决死锁问题,首先咱们得先定准定位到产生死锁的SQL语句,对于这点需要在MySQL内部会有一个日志,来记录着它自身捕获到的死锁,可以通过如下命令查看:

  • • SHOW ENGINE INNODB STATUS\G;:查看InnoDB存储引擎的运行状态日志。

当出现死锁时,MySQL会将死锁对应的信息记录到该日志中,但这个日志会记录着InnoDB运行期间的所有状态日志,因此输入之后,要先找到LATEST DETECTED DEADLOCK这块区域的日志:

图片

死锁日志

当咱们手动模拟生产一个死锁后,在InnoDB的日志中就能够找到相应的死锁日志,这里为了方便观察则只列出了死锁的日志,其实InnoDB的运行时日志内容包含很多方面。

在上面的日志中,基本上已经写的很清楚了,在2022-11-04 23:04:34这个时间点上,检测到了一个死锁出现,该死锁主要由两个事务产生,SQL如下:

  • • (1):UPDATE zz_account SET balance = balance + 888 WHERE user_name = "熊猫";

  • • (2):UPDATE zz_account SET balance = balance + 666 WHERE user_name = "竹子";

在事务信息除开列出了导致死锁的SQL语句外,还给出了两个事务对应的线程ID、登录的用户和IP、事务的存活时间与系统线程ID、持有的锁信息与等待的锁信息.....。

除开两个发生死锁的事务信息外,倒数第二段落还给出了两个事务在哪个锁上产生了冲突,以上述日志为例,发生死锁冲突的地点位于db_zhuzi库中zz_account表的主键上,两个事务都在尝试获取对方持有的X排他锁,后面还给出了具体的页位置、内存地址....。

最后一条信息中,给出了MySQL介入解除死锁的方案,也就是回滚了事务(2)的操作,强制结束了事务(2)并释放了其持有的锁资源,从而能够让事务(1)继续运行。。

经过查看上述日志后,其实MySQL已经为我们记录了产生死锁的事务、线程、SQL、时间、地点等各类信息,因此想要彻底解决死锁问题的方案也很简单了,根据日志中给出的信息,去找到执行相应SQL的业务和库表,优化SQL语句的执行顺序,或SQL的执行逻辑,从而避免死锁产生即可。

最后要注意:如果是一些偶发类的死锁问题,也就是很少出现的死锁现象,其实不解决也行,毕竟只有在一些特殊场景下才有可能触发,重点是要关注死锁日志中那些频繁出现的死锁问题,也就是多次死锁时,每次死锁出现的库、表、字段都相同,这种情况时需要额外重视并着手解决。

4.3、服务器CPU100%

对于CPU100%甚至更高的问题,其实排查起来也比较简单,排查的思路其实很简单:

  • • 先找到CPU过高的服务器。

  • • 然后在其中定位到具体的进程。

  • • 再定位到进程中具体的线程。

  • • 再查看线程正在执行的代码逻辑。

  • • 最后从代码层面着手优化掉即可。

上述这个工作具体该如何完成呢?下面一起来实操一下。

首先通过top指令查看系统后台的进程状态:

  1. [root@localhost ~]# top
  2. top -14:09:20 up 2 days,16 min,3 users,  load average:0.45,0.15,0.11
  3. Tasks:98 total,1 running,97 sleeping,0 stopped,0 zombie
  4. %Cpu(s):100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
  5. KiBMem:997956 total,286560 free,126120 used,585276 buff/cache
  6. KiBSwap:2097148 total,2096372 free,776 used.626532 avail Mem
  7.    PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
  8. 76661 root      20022494322570811592 S 99.92.60:28.32 mysql
  9. 636 root      20029893661884836 S  0.30.63:39.52 vmtoolsd
  10. 1 root      2004603259563492 S  0.00.60:04.27 systemd
  11. 2 root      200000 S  0.00.00:00.07 kthreadd
  12. 3 root      200000 S  0.00.00:04.21 ksoftirqd/0
  13. 5 root       0-20000 S  0.00.00:00.00 kworker/0:0H
  14. 7 root      rt   0000 S  0.00.00:00.00 migration/0
  15. 8 root      200000 S  0.00.00:00.00 rcu_bh
  16. 9 root      200000 S  0.00.00:11.97 rcu_sched
  17.      .......

从如上结果中不难发现,PID76661MySQL进程对CPU的占用率达到99.9%,此时就可以确定,机器的CPU利用率飙升是由于该进程引起的。

此时可以再通过top -Hp [PID]命令查看该进程中CPU占用率最高的线程:

  1. [root@localhost ~]# top -Hp76661
  2. .....省略系统资源相关的信息......
  3.    PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
  4. 77935 root      20022494322649611560 R 99.92.73:43.95 mysql
  5. 77915 root      20022494322649611560 S  0.02.70:00.00 mysql
  6. 77916 root      20022494322649611560 S  0.02.70:00.08 mysql
  7. 77917 root      20022494322649611560 S  0.02.70:00.00 mysql
  8. 77918 root      20022494322649611560 S  0.02.70:00.00 mysql
  9. 77919 root      20022494322649611560 S  0.02.70:00.00 mysql
  10.  .......

top -Hp 76661命令的执行结果中可以看出:其他线程均为休眠状态,并未持有CPU资源,而PID为77935的线程对CPU资源的占用率却高达99.9%

到此时,导致CPU利用率飙升的“罪魁祸首”已经浮现水面,但此时问题来了!在如果这里是Java程序,此时可以先将该线程的PID转换为16进制的值,然后进一步排查日志信息来确定具体线程执行的业务方法。但此时这里是MySQL程序,咱们得到了操作系统层面的线程ID后,如何根据这个IDMySQL中找到对应的线程呢?

4.3.1、查看OS线程ID与MySQL线程ID关系(MySQL5.7及以上)

MySQL5.7及以上的版本中,MySQL会自带一个名为performance_schema的库,在其中有一张名为threads的表,其中表中有一个thread_os_id字段,其中会保存每个连接/工作线程与操作系统线程之间的关系(在5.7以下的版本是隐式的,存在于MySQL内部无法查看)。

  1. -- 先连接MySQL数据库
  2. mysql -uroot -p
  3. Enter password: ***
  4. -- 进入 performance_schema 库
  5. use performance_schema;
  6. -- 查询 threads 表(竖排输出)
  7. SELECT * FROM threads\G;

执行上述命令后,会输出所有已创建的线程,查询之后的最终结果如下:

图片

MySQL~OS关系

从上述中可以明显看出MySQL线程和OS线程之间的关系,当通过前面的top指令拿到CPU利用率最高的线程ID后,在再这里找到与之对应的MySQL线程,同时也能够看到此线程正在执行的SQL语句,最后优化对应SQL语句的逻辑即可。

4.3.2、查看OS线程ID与MySQL线程ID关系(MySQL5.6及以下)

上面讲了MySQL5.7及以上版本的排查方式,但有些小伙伴可能会存在困扰:我的MySQL如果是MySQL5.7版本以下的呢?其实也不是不能排查,只是有些许麻烦!下面一起来过一过~

还记得之前排查死锁时用到的SHOW ENGINE INNODB STATUS\G;命令嘛?执行之后可以查看InnoDB引擎的运行时日志,在里面有一个TRANSACTIONS板块,统计着所有存活事务的信息,此时也可以从中得到相应的OS线程、MySQL线程的映射关系,如下:

图片

MySQL-OS线程

但是这种方式仅能够获取到OS线程、MySQL线程之间的映射关系,无法获取到对应线程/连接正在执行的SQL语句,此时如果线程还在运行,则可以通过show processlist;查询,如下:

图片

查询执行SQL

但这种方式只能看到正在执行的SQL语句,无法查询到最近执行过的语句,所以这种方式仅适用于:线上SQL还在继续跑的情况,如果SQL已经执行结果,其实CPU的占用率也会下降,这类偶发性的CPU占用过高也无需排查,我们要优化的是那些一直导致CPU过高的SQL语句。

同时再补充一句,SHOW ENGINE INNODB STATUS;命令只能显示1MB的数据,如果想要查看完整的InnoDB运行期日志,可以找到innodb_status.[pid]日志文件,MySQL会每隔15s就刷写一次InnoDB的运行日志进去,其中可以查看到完整的运行时日志。

4.3、CPU占用率过高排查总结

其实排查这类问题不难,主要是得先定位到对应的线程,然后再找出OS线程对应的MySQL线程,找到对应的MySQL线程后,再找到其正在执行的SQL语句,因为线程是执行这条语句才导致占用高额CPU资源的,因此最后只需要把SQL的逻辑调整合理后,就能够彻底解决CPU占用过高的问题。

4.4、MySQL磁盘100%

所谓的磁盘100%不是指磁盘空间被用光,而是指磁盘IO达到100%利用率,这种情况下一般会导致其他读写操作都被阻塞,因为操作系统中的IO总线会被占满,无法让给其他线程来读写数据,先来总结一下出现磁盘IO占用过高的原因:

  • • ①突然大批量变更库中数据,需要执行大量写入操作,如主从数据同步时就会出现这个问题。

  • • ②MySQL处理的整体并发过高,磁盘I/O频率跟不上,比如是机械硬盘材质,读写速率过慢。

  • • ③内存中的BufferPool缓冲池过小,大量读写操作需要落入磁盘处理,导致磁盘利用率过高。

  • • ④频繁创建和销毁临时表,导致内存无法存储临时表数据,因而转到磁盘存储,导致磁盘飙升。

  • • ⑤执行某些SQL时从磁盘加载海量数据,如超12张表的联查,并每张表数据较大,最终导致IO打满。

  • • ⑥日志刷盘频率过高,其实这条是①、②的附带情况,毕竟日志的刷盘频率,跟整体并发直接挂钩。

一般情况下,磁盘IO利用率居高不下,甚至超过100%,基本上是由于上述几个原因造成的,当需要排查磁盘IO占用率过高的问题时,可以先通过iotop工具找到磁盘IO开销最大的线程,然后利用pstack工具查看其堆栈信息,从堆栈信息来判断具体是啥原因导致的,如果是并发过高,则需要优化整体架构。如果是执行SQL加载数据过大,需要优化SQL语句......

磁盘利用率过高的问题其实也比较好解决,方案如下:

  • • ①如果磁盘不是SSD材质,请先将磁盘升级成固态硬盘,MySQLSSD硬盘做了特殊优化。

  • • ②在项目中记得引入Redis降低读压力,引入MQ对写操作做流量削峰。

  • • ③调大内存中BufferPool缓冲池的大小,最好设置成机器内存的70~75%左右。

  • • ④撰写SQL语句时尽量减少多张大表联查,不要频繁的使用和销毁临时表。

基本上把上述工作都做好后,线上也不会出现磁盘IO占用过高的问题。

五、MySQL线上排查篇总结

相对来说,MySQL中除开Memory引擎外,其他引擎都是基于磁盘的,虽然InnoDB将内存开发到了极致,但最终还是基于磁盘的,InnoDB对内存的占用最大不会超出BufferPool缓冲池的大小,因此MySQL自然也不存在所谓的OOM内存溢出、内存占用过高等问题。

MySQL 之表分区

分库分表相信大家都听说过,但(partitioning)表分区这个概念却鲜为人知,MySQL5.1版本中开始支持了表分区技术,同时在MySQL5.5中进行了优化,自从MySQL支持的绝大部分引擎都开启了表分区功能。

MySQL 海量数据分库分表

不要为了分库分表而分库分表。引入SOA架构中的一句话:架构不是一蹶而起的,而是慢慢演进的。只有真正需要分库分表来解决问题时,才去真正的做拆分,否则会导致很多不必要的麻烦产生。

图片

阿里开发手册

一、为什么需要分库分表?

编程里面有句话叫做:加一台服务器的收益胜过千万次调优,毕竟机器数量才是真理。

1.1、请求数太高

在高并发情况下,大量读写请求落入数据库处理,最终会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service层来看就是,可用数据库连接锐减甚至无连接可用,接下来面临的就是并发量急剧增加、吞吐量严重下降、连接出现异常、数据库时常宕机、系统经常崩溃一系列后患问题。

1.2、数据查询慢

  • • 一、单表或单库数据量过大,导致数据检索的效率直线降低。

  • • 二、单库整体并发连接数接近系统阈值,从而导致此请求获取不到连接数,一直处于等待获取连接的状态。

  • • 三、已经获取但由于并发过高导致CPU被打满,就算SQL所查询的表数据行很少,也同样因为没有CPU资源无法执行,所以一直处于阻塞状态,最终出现查询过慢的现象。

1.3、数据量太大

  • • ①当一个库的数据存储量太大时,就算每张表的并发数不多,但是因为是海量数据,单库中存在大量的数据表,每张表都有一部分并发请求,导致最终单库的连接数阈值成为数据库的瓶颈。

  • • ②当一张表数据太多时,导致单表查询速度严重下降,虽然InnoDB存储引擎的表允许的最大行数为10亿,但是如果一张表的数据行记录达到上亿级别,那就算通过索引去查询一条数据,它也需要至少经过上十次到几十次磁盘IO,从而导致单表查询速度直线下降;一般一张表的数据行数在800~1200W左右最合适。

1.4、单体架构的通病

单库中某张表遇到问题需要修复时,会影响了整个库中所有数据,因为有些严重的情况下需要停机优化后重新上线,这时其它一些没有出现问题的表,也会因此受到影响。

1.5、MySQL数据库瓶颈

上面聊到的各类问题,本质上都是一些数据库瓶颈,一般程序的性能瓶颈都源自于硬件问题,而问题归根到底都属于IO、CPU瓶颈。

2.1、IO瓶颈

IO瓶颈主要分为两方面,一方面是磁盘IO瓶颈,另一方面则是网络IO瓶颈,具体如下:

磁盘IO瓶颈

MySQL为了提升读写性能,通常都会将一些经常使用的热点数据放入缓冲区,避免每次读写请求都走磁盘IO的方式去操作数据,但当整库数据数据太多时,可能会出现大量的热点数据,此时内存缓冲区中又无法全部放下,因此会导致大量的读写请求产生磁盘IO,通过读写磁盘的方式去完成数据读写,从而导致查询速度下降。

②一次查询数据的过程中,由于涉及到的数据过多,导致无法全部在内存中完成数据检索,如分组、排序、关联查询等场景,内存中相应的缓冲区无法载入要操作的全部数据,因此只能通过分批的方式处理数据,此时又需要经过大量磁盘IO后才得到最终数据集。

这种情况在单表查询时也存在,如果单表中字段过多,导致每一行数据的体积都比较大,因此会超出MySQL磁盘IO每次读取16KB的这个限制,因而也会出现检索单表数据时,一条数据就需要经过多次IO才能拿完。

简单来说磁盘IO瓶颈有两种情况,一种是磁盘IO次数过多,导致IO利用率持续居高不下,另一种情况就是每次读取数据都超出单次IO的最大限制,因此会引发多次IO,从而又演变成第一种情况。

网络IO瓶颈

当一个请求的生成的SQL语句执行后,由于这条语句得到的结果集数据太多,从而会导致相应时的数据包体积过大,这时如果网络带宽不够,就会出现传输过慢的问题,因为底层需要对大的数据包做拆包,然后分批返回,这时也会阻塞其它读写数据的请求,网络带宽就会成为新的瓶颈。

其实网络IO瓶颈的情况也比较好理解,网络带宽就好比一条马路,由于一条SQL返回的结果集过大,因此装载数据包的卡车远远超出了马路的宽度,这时就需要将数据拆分到多辆能通行的小卡车装载,但虽然这样做能够让数据包“变窄”成功返回,但因此也会造成这个大数据包会变长,从而占满整个带宽通道,因此其它网络数据包需要等这个大包传输完成后,才能继续通行。

2.2、CPU瓶颈

上面简单的了解IO瓶颈后,再来看看机器本身的CPU瓶颈,CPU瓶颈也会分为两种,一种是运算密集型瓶颈,另一种则是阻塞密集型瓶颈。

CPU工作原理

线程是操作系统最小的执行单元,因此CPU工作时本质上就是以线程作为载体,然后执行线程任务中的一条条指令,一般情况下单核CPU在同一时刻只能够支撑单挑线程运行,但随着2002年超线程技术的发布后,如今的CPU通常具备两组ALU执行单元,也就是大家常听到的单核双线程、四核八线程。

因为超线程技术的存在,所以一核CPU在同一时刻可支撑两条线程一起运行,这种结构的CPU在现在也被称为大核架构,即一核心具备两逻辑处理器。而传统的单核单线程的CPU则被称为小核架构,目前最新的12/13CPU还有大小核异构的架构。

但无论是小核、大核、大小核架构的CPU,本质上在机器运行期间,往往整个系统内所有程序的线程数,加起来之后都会远超于CPU核数,如下:

图片

CPU核数与线程数

那在这种情况下是如何工作的呢?相信有相关知识储备的小伙伴第一时间就会想到一个词汇:时间片切换执行,也就是有限的CPU核心会在所有线程之前来回切换,以此来确保系统和程序的正常运转。

其中的原理简单理解起来也并不难,因为每条线程的指令在执行时都需要数据作为基础,因此CPU在执行某条指令后,执行新指令时需要加载数据,此时会去载入数据,而操作系统这时就会将CPU资源切换给其它的线程执行,等这条线程的数据准备好了再切换回来。

运算密集型瓶颈

用户请求生成的SQL语句中包含大量join联表查询、group by分组查询、order by排序等之类的聚合操作,同时这些操作要基于特别大的数据集做运算,导致执行时消耗大量CPU资源,CPU占用率直达100%+,因此无法再给其它线程提供执行所需的CPU资源。

阻塞密集型瓶颈

一张或多张表的数据量特别大,此时基于这些大表做数据检索时,需要扫描的数据行太多,虽然这些SQL语句不会大量消耗CPU资源,但由于数据量过大,会导致长时间占用CPU资源,从而造成其它线程无法获取CPU资源执行。

上面聊到的两种CPU瓶颈中,一种属于大量运算导致CPU资源耗尽,一种属于大表检索导致长时间占用CPU资源,两种情况都会导致CPU遇到瓶颈,从而无法给其它线程提供运行所需的资源。有人也许会说,似乎这是SQL不合理导致的呀?其实不然,因为往往很多正常的SQL也会出现大量消耗CPU、或检索大表数据长时间占用CPU的情况。

无论是IO瓶颈,还是CPU瓶颈,都可以通过升级硬件配置的方式来解决,比如升级磁盘材质、加大网络带宽、增多CPU核数等,但前面讲到过,这种方式面对高并发大流量的冲击,治标不治本。如果客户端流量过大,这时不应该再试图寻找更强壮的马来代替,而是应该选择多匹马的方案来解决。

其实这也是一种节省成本的做法,无限制升级硬件也不是长久之道,而且越到后期,配置越高的硬件成本越高,四颗八核十六线程的CPU,成本价可能还会比一颗32Core 64ThreadCPU要便宜。

1.6、再聊为何需要分库分表

其实不管是并发过高、或访问变慢、亦或数据量过大,本质上都属于数据库遭遇到了瓶颈,但只不过根据情况不同,分为不同类型的数据库瓶颈,但是最终对于客户端而言,就是数据库不可用了或者变慢了。

而导致数据库出现此类问题的原因,实则就是随着业务的发展,系统的数据不断增多、用户量不断增长、并发量不断变大,因此对于数据再进行CRUD操作的开销也会越来越大,再加上物理服务器的CPU、磁盘、内存、IO等资源有限,最终也会限制数据库所能承载的最大数据量、数据处理能力。

当出现上述这类问题,并且无法通过升级硬件、版本、调优等手段解决时,或者只能临时解决,却无法保障未来业务增长的可用性时,此刻就需要合理的设计数据库架构来满足不断增长的业务,这就是分库分表诞生的初衷,目的就是为了避免单库由于压力过高,导致出现之前所说的一系列问题,合理的设计架构能最大限度上提高数据库的整体吞吐量。

二、传统单库架构到分库分表的演进史

早些年我司新开一条业务线切入金融领域,最开始的因为担心风险过大,所以并未投入太多的成本,处于一个试错阶段,最初就把所有业务都怼入一个war包,所有业务共享一个库资源,结构大致如下:

图片

单库架构

而在当时那段时间,金融领域快速发展,慢慢的,Java搭建的金融核心系统开始出现响应变慢,甚至时不时宕机,部署整个金融核心系统的单台Tomcat很快遇到了瓶颈,后来实在因为Tomcat三天俩头宕机重启,迫于无奈开始了业务架构的改进,如下:

图片

应用拆分

因为当时考虑到业务发展速度,并没有使用NginxTomcat进行横向拓展做水平集群,因为如果仅仅只是通过Nginx来做,可能以后还是需要对架构进行升级,进一步按业务拆分成分布式系统,所以经讨论后一致决定直接引入分布式架构对系统进行改造。

经过改造后的业务架构,Java应用这边的确可以抗住每天的流量,但当时因为在做Java程序架构升级的时候,只引入了Redis、MQ降低数据库并发,并没有去对数据库做太多的拓展,因此当时还是所有业务共享一个库。

随着时间的慢慢推移,虽然用MQ、Redis做了流量的削峰,但是也挡不住当时的流量请求,做过金融业务的小伙伴应该清楚,它不像其他业务领域中读多写少,金融业务中读多写也多,同时还需要每日对账、跑批、统计报表.....,因此对数据库的读写操作相当多,而金融业务又要求数据实时性,所以很多操作无法走MQ异步完成,也不能放入Redis做数据缓存,Why

好比拿股市中最基本的买入卖出为例,原本客户看到的是5$一股,然后用户选择了买入,因为数据放在缓存里没有及时更新,结果最新价格成了10$一股,此时用户买入10000$,按用户的预估应该是会买入2000股左右,结果最终买成了1000股,平白无故导致用户追涨。
也包括大量的写操作也无法走MQ异步完成,比如用户以5$的成本价买入,现在看到了最新的价格为10$一股,然后选择了全仓卖出,这时你将卖出操作发给了MQ异步执行,结果MQ中的卖出消息并未立马被消费,而是到了一小时后价格降到了2.5$一股时,才真正被消费,这回导致原本用户能赚100点,最后反变为倒亏50点。

虽然当时手上的项目并非交易所类型的金融业务,但无论是哪类金融业务,基本上对数据的实时性要求特别高,所以MQ、Redis基本上只能分担很小一部分的流量,其它大部分的流量依旧会需要落库处理。也正因如此,最终数据库成了整个系统的瓶颈口,为了去解决这个问题,最终选用服务独享库的方案进行升级(也就是后续要说的垂直分库模式),如下:

图片

业务分库

而数据库这边经过拆分之后,相较于之前的单库架构,整个数据库系统的稳定性和可用性明显得到改善,但由于某些库是经常需要被访问到的(资金库、信审库、后台库),所以这些核心库以单节点方式去承载流量还是显得有点吃力(吞吐量下降、响应速度变慢),最终又对核心业务库进行横向扩容,架构如下:

图片

横向集群

最终,根据服务不同的业务规模,拆成了规模不同、业务不同的库,但是这其中的拆分规则到底是什么呢?以及拆分的依据又是啥?

三、分库分表正确的拆分手段

现在你的手里有一个西瓜,吃的时候切法有两种,一种是以垂直方向竖切,另一种是以水平方向横切,如下:

图片

横/竖切瓜

这种切割方式在分库分表中也存在,分库分表的拆分规则也可分为:水平、垂直 两个维度。

但水平、垂直该怎么拆?什么场景下拆?拆完会出现的问题又该怎么去解决呢?

注意:分库、分表是两个概念,两者并不是同一个名词,所以这里需要牢记!按拆分的粒度来排序,共计可分为四种方案:垂直分表、水平分表、垂直分库、水平分库

3.1、不同场景下的分表方案

分表大多是在单表字段过多或数据过多的场景下,会选择的一种优化方案,当一个表字段过多时,应当考虑垂直分表方案,将多余的字段拆分到不同的表中存储。当一个表的数据过多时,或者数据增长速率过快时,应当考虑通过水平分表方案,来降低单表的数据行数。

3.1.1、垂直分表:结构不同,数据不同(表级别)

当一张表由于字段过多时,会导致表中每行数据的体积变大,而之前不仅一次聊到过:单行数据过大带来的后患,一方面会导致磁盘IO次数增多,影响数据的读写效率;同时另一方面结果集响应时还会占用大量网络带宽,影响数据的传输效率;再从内存维度来看,单行数据越大,缓冲区中能放下的热点数据页会越少,当读写操作无法在内存中定位到相应的数据页,从而又会产生大量的磁盘IO

从上述的几点原因可明显感受到,当单表的字段数量过多时,会导致数据检索效率变低、网络响应速度变慢、数据库吞吐量下降等问题,面对于这种场景时,就可以考虑垂直分表。

例:现在有一张表,总共43个字段,但是对于程序来说,一般经常使用的字段不过其中的十余个,而这些经常使用的字段则被称之为热点字段,假设此时这张表中的热点字段为18个,剩下的冷字段为25个,那么我们就可以根据冷热字段来对表进行拆分,如下:

图片

垂直分表

对字段过多的表做了垂直拆分后,这时就能很好的控制表中单行数据的体积,从而能够让经常使用的字段数据更快的被访问、更快的返回。不过在做垂直拆分时,记得在冷字段的表中多加一个列,作为热字段表的外键映射,保证在需要用到冷数据时也能找到。

对于这种垂直分表的场景在很多业务中都有实现,如用户数据会分为users、user_infos,订单数据会分为order、order_info......。如果表结构是按照数据库三范式设计的,基本上也无需考虑做垂直分表。

经过垂直拆分后的两张或多张表,各自之间的表结构不同,并且各自存储的数据也不同,这是垂直分表后的特性,以上述例子来说,热点字段表会存储热数据,冷字段表会存储冷数据,两张表的拼接起来后会组成完整的数据。

3.1.2、水平分表:结构相同,数据不同(表级别)

前面聊到了字段过多对读写数据时的影响,接着再来看看数据过多时会导致的负面影响,虽然数据库中有索引机制,能够确保单表在海量数据的基础上,检索数据的效率依旧可观,但随着数据不断增长,当达到千万级别时,就会出现明显的查询效率下降的问题。

这里所谓的查询效率下降并非指单表的简单查询语句,而是指一些复杂的SQL语句,毕竟线上往往很多需求,都要经过复杂的SQL运算后才能得到数据,比如多张表联查再跟了一堆分组、排序、过滤、函数处理.....语句,这种情况下再基于这种大表查询,就算走了索引,效率也不会太高,因为其中要涉及到大量数据的处理,因此面对这种情况,就可以对表进行水平拆分。

例:现在有一张表,里面有三千万条数据记录,当基于该表去执行一条在索引上的复杂SQL时,也需要一定时间,至少会比1000万的数据表慢了好几倍,此时可以把这张3000W的表,拆为三张1000W的表,如下:

图片

水平分表

对一张大表做了水平分表之后,咱们能够很好的控制单表的数据行数,3000W条数据的表和1000W条数据的表,查询速度其实不仅仅只是3倍的差距,数据过了千万级别时,数据量每向上增长一个量级,查询的开销也会呈直线性增长,因此做水平分表时,一般要求控制在500-1200W之间为一张表。

阿里内部的单表数据量大概控制在500~600W一张,因为这个数据量级,就算使用分布式策略生成的分布式ID作为主键,也能够很好的把索引树高控制在3~5以内,也就意味着最多三到五次磁盘IO就一定能得到数据,从而将单表的查询性能控制在最佳范围内。

水平拆分之后的两张或多张表,每张表的表、索引等结构完全相同,各表之间不同的地方在于数据,每张表中会存储不同范围的数据。不过拆分之后的水平表究竟会存储哪个范围的数据,这要根据水平分表的策略来决定,你可以按ID来以数据行分表,也可以按日期来以周、月、季、年.......分表。

3.1.3、分表方案总结

分表方案主要是针对于单表字段过多或数据过多的情况去做的,通过垂直、水平分表的手段,能够很好解决单表由于字段、数据量过多产生的一系列负面影响,但无论是垂直分表还是水平分表,都必须建立在单库压力不高,但是单表性能不够的情况下进行的,因为它们都属于库内分表。

如果是数据库整体压力都很大的情况,从而导致的查询效率低下,那不管再怎么做分表也无济于事,毕竟连流量入口都出现了拥塞,自然分表也无法解决问题,所以分表操作只建立在单库压力不高,但是单表查询效率低下的情况适用。

好比把数据库比作一个游乐园,而表则可以比作里面的一个个娱乐项目,由于某些娱乐项目比较火爆,因此可以对同一类型的项目多开几个,从而解决热点项目顾客要排队很久才能玩的问题。但如果是整个游乐园的人流量都非常大,每个项目都有大量顾客排队,这时再去对内部的娱乐项目作拓展,这种方式是行不通的,毕竟游乐园的大门就那么大,游客连进大门都要排队,再在内部作项目拓展显然无济于事。

3.2、不同场景下的分库方案

经过前面的分表总结后可以得知:如果是因为库级别的压力较大,这时就需要考虑分库方案,而不仅仅是分表方案,换到上面的例子中,当整个游乐园的人流量非常大时,应该考虑的是开分园,而并非是在内部作拓展。

分库和分表一样,也可以按垂直和水平两个维度来分,垂直分库本质上就是按业务分库,也就是现在分布式/微服务架构中,业务独享库的概念,而水平分库则是对同一个节点作横向拓展,也就是高可用集群的概念。

3.2.1、垂直分库:结构不同,数据不同(库级别)

当数据库使用单机的结构部署,在大流量/高并发情况下遇到瓶颈时,此时就可以考虑分库方案了,首先来聊聊垂直分库。

在项目开发过程中,一般为了方便团队分工合作和后续管理维护,通常都会对单个项目划分模块,按照业务属性的不同,会将一个大的项目拆分为不同的模块,同时每个业务模块也会在数据库中创建对应的表。

而所谓的垂直分库,就是根据业务属性的不同,将单库中具备同一业务属性的表,全部单独拧出来,放在一个单独的库中存储,也就按业务特性将大库拆分为多个业务功能单一的小库,每个小库只为对应的业务提供服务,这样能够让数据存储层的吞吐量呈几何倍增长。

例:以前面给出的金融项目来说,当单个库无法承载整个业务系统产生的流量压力时,比如此时单个数据库节点的QPS上限为2000,但业务高峰期抵达数据库的瞬时流量,造成了2W个并发请求,这时如果处理不当,数据库基本上会被这波瞬时流量打宕机。

对于前面所说的这种情况,就可以考虑根据业务属性拆分整个大库了,核心思想就是:既然单个节点扛不住,那就加机器用多个节点来抗,在客户端按照不同的业务属性,将过来的请求按照不同的业务特性做分流处理,如下:

图片

垂直分库

原本之前单库时,无论是查询用户业务相关的SQL语句,还是放款/还款之类的SQL语句,不管三七二十一统统发往同一个数据库处理,全部都由这一个数据库节点提供数据支持,但按业务特性做了垂直分库后,用户相关的读写请求落入用户库,放款/还款之类的读写请求会落入资金库.....,这样就能很好的去应对单库面临的负载过高问题。

垂直分库后,每个库中存储的数据都不相同,因为是按照业务特性去将对应的表抽出去了组成新库,所以库结构也是不同的,用户库是由用户相关的表组成、信审库是由心生相关的表组成.......。

3.2.2、水平分库:结构相同,数据不同(库级别)

经过前面的垂直分库后,根据不同的业务类型,将访问压力分发到不同的库处理后,虽然在极大程度上提升了数据层的负荷能力,但如果某类业务的并发数依旧很高,比如经过前面的业务分流后,假设平台库需要承载5000的并发、信审库依旧需要承载1W的并发,这也远超出了单个数据库节点的处理瓶颈,最终可能还是会能把对应的数据库节点打宕机,所以此时可通过水平分库的方案,来提升某类业务库的抗并发吞吐量。如下:

图片

水平分库

通过水平拆分的方案,能够根据压力的不同,分配不同的机器数量,从而使得不同库的抗压性都能满足对应的业务需求,这也就类似于分布式/微服务项目中,对单个服务做集群保证高可用的策略。

水平分库是基于一个节点,然后直接横向拓展,这也就意味着同一业务的数据库,各节点之间的库结构完全相同,但每个节点中的数据是否相同,这就要看你自己去决定了,一般情况下都是不同的,也就是不同节点的库会存储不同范围的数据。

3.2.3、另类的分库方案

前面聊清楚了分库分表中经典的垂直分库和水平分库方案,但除开这两种之外,还有一些另类的分库方案,也就是指一些数据库的高可用方案,例如主从复制、读写分离、双主热备等方案。

主从方案:一般会搭建读写分离,写请求发往主节点处理,读请求发往从节点处理,从节点会完全同步主节点的数据,从而实现读写请求分开处理的效果,能够再一定程度上提升数据存储层整体的并发处理能力。同时当主机挂掉时,从机也能够在很快的时间内替换成主机,以此确保数据层的高可用。

多主方案:一般是双主方案,两台数据库节点之间互为主从,相互同步各自的数据,两台节点中都具备完整的数据,读写请求可以发给任意节点处理。相较于前面的主从读写分离架构,这种双主双写架构的灾备能力更强,因为当其中某个节点宕机时,另一个节点可以完全接替对方的流量,不存在从机切换成主机的时间开销,因此能够保证数据100%不丢失。

不过无论是主从、还是多主方案,本质上都存在木桶效应问题,因为这种分库方案中都会完全同步数据,当一个节点的数据存满时,会导致其他节点也不可用。

四、分库分表总结

分库方案能够在最大程度上提升数据存储层的性能,但一般在考虑选用分库方案时,应该先考虑使用主从、主主的方案,如果前面两种方案依旧无法提供系统所需的吞吐量,再考虑选择垂直分库方案,按照业务属性去划分库结构,最后才应该考虑选择水平分库方案(同时也要记得考虑数据的增长速率情况)。

那为什么需要遵循这个顺序呢?因为架构不能过度设计,选用主从、主主能够满足需求时,就选这两种方案,因为一方面能避免很多问题产生,同时实现起来也比较简单。同时先考虑垂直分库,再考虑水平分库,是因为水平分库可以建立在垂直分库的基础上,进一步对存储层作拓展,因此灵活性会更高,拓展性会更强。

同时最后再聊一下分库之后带来的好处:

  • • ①能够得到最大的性能收益,吞吐量会随机器数量呈直线性增长。

  • • ②能够最大程度上保障存储层的高可用,任意节点宕机都不会影响整体业务的运转。

  • • ③具备相当强的容错率,当一个库中的结构存在问题需要重构时,无需将所有业务停机更新。

  • • ④具备高稳定性,分库+配备完善的监控重启策略后,基本上能确保线上无需人工介入管理。

也就是说,分库方案能够让你的存储层真正达到高可用、高性能、高稳定的“三高”水准。

但要切记不能盲目的分库分表,分库分表前得先清楚性能瓶颈在哪里,然后根据业务以及瓶颈,遵循拆分规则的顺序做合理的拆分方案选择,因为分库分表虽然能带来很大的好处,但是同时也产生了一系列的问题需要去解决。

如果做了分库分表就一定要记住:既不能过度设计,也要考虑数据增长性,提前设计好扩容方案,以便于后续性能再次出现瓶颈时,能够基于现有架构进行优雅升级,一位优秀的开发/架构必须具备前瞻性

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/858283
推荐阅读
相关标签
  

闽ICP备14008679号