当前位置:   article > 正文

《机器学习实战》——决策树_backend tkagg is interactive backend. turning inte

backend tkagg is interactive backend. turning interactive mode on.

详细代码及数据已上传到githubhttps://github.com/SONGSONG729/decision-tree

按照书本代码进行实验时的报错:

  1. 在使用Matplotlib注解时,出现了错误:Backend Qt5Agg is interactive backend. Turning interactive mode on.
    错误原因:matplotlib的默认backend是TkAgg,而FltkAgg, GTK, GTKAgg, GTKCairo, TkAgg , Wx or WxAgg这几个backend都要求有GUI图形界面的,所以在ssh操作的时候会报错。
    解决办法:指定不需要GUI的backend(Agg, Cairo, PS, PDF or SVG),在plt.show()之前,加上plt.switch_backend(‘agg’)

  2. 在使用pickle模块存储决策树时,出现了错误:write() argument must be str, not bytes
    错误原因:fw这个变量的类型应该是bytes的
    解决办法:将’w’改为’wb’。
    编译后提示UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 0: illegal multibyte sequence错误,是由于之前保存的txt文件是用二进制写入的所以在读取时也应该用二进制,即读文件中的fr = open(filename)应该改为fr = open(filename, 'rb')

  3. 使用决策树预测隐形眼镜类型

# _*_ coding:utf-8 _*_
from math import log
import operator
import matplotlib.pyplot as plt
import treePlotter

def calcShannonEnt(dataSet):
    '''
    计算给定数据集的香农公式
    :param dataSet:
    :return:
    '''
    numEntries = len(dataSet)
    labelCounts = {}
    # 为所有可能分类创建字典
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)  # 以2为底求对数
    return shannonEnt
def createDataSet():
    '''
    简单鉴定数据集
    :return:
    '''
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels

def splitDataSet(dataSet, axis, value):
    '''
    按照给定特征划分数据集
    :param dataSet: 待划分的数据集
    :param axis: 划分数据集的特征
    :param value: 需要返回的特征值
    :return:
    '''
    retDataSet = []  # 创建新的lise对象,不修改原列表
    for featVec in dataSet:
        # 将符合特征的数据抽取出来
        if featVec[axis] == value:
            reduceFeatVec = featVec[:axis]
            reduceFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reduceFeatVec)
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    '''
    选择最好的数据集划分方式
    :param dataSet:
    :return:
    '''
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        # 创建唯一的分类标签列表
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)

        newEntropy = 0.0
        # 计算每种划分方式的信息熵
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        # 计算最好的信息增益
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

def majorityCnt(classList):
    '''
    :param classList: 分类名称的列表
    :return: 出现次数最多的分类名称
    '''
    # key:classList中唯一值的数据字典
    # value:classList中每个类标签出现的频率
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    # 用operator操作键值排序字典
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet, labels):
    '''
    创建树
    :param dataSet: 数据集
    :param labels: 标签列表,包含数据集中所有特征的标签
    :return:
    '''
    # classList列表变量包含了数据集的所有类标签
    classList = [example[-1] for example in dataSet]
    # 所有的类标签完全相同则停止划分,返回该类标签
    # 第一个元素的值的数量等于整个列表的长度,即说明整个列表都是这个值,所以该数据集类别全部相同了
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 所有特征已经利用完,仍然不能将数据集划分成仅包含唯一类别的分组,返回出现次数最多的类别作为返回值
    # 所有特征已经利用完,只剩下标签列,仍然无法区分剩余样本,则采用“少数服从多数”的方案
    if len(dataSet[0]) == 1:
        return majorityCnt()

    bestFeat = chooseBestFeatureToSplit(dataSet)  # 当前数据集选取的最好特征
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel: {}}  # 存储树的所有信息
    # 得到列表包含的所有属性值
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree(),
    # 得到的返回值将被插入到字典变量myTree中,
    # 函数终止时,字典中将会嵌套很多代表叶子节点信息的字典数据
    for value in uniqueVals:
        subLabels = labels[:]  # 复制了类标签,并将其存储在新列表变量subLabels中
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree

def classify(inputTree, featLabels, testVec):
    '''
    使用决策树的分类函数(递归函数)
    :param inputTree:
    :param featLabels:
    :param testVec:
    :return:
    '''
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)  # 将标签字符串转换为索引
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                classLabel = secondDict[key]
    return classLabel

def storeTree(inputTree, filename):
    import pickle
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()

def grabTree(filename):
    import pickle
    fr = open(filename, 'rb')
    return pickle.load(fr)

def main():
    '''
    myDat, labels = createDataSet()
    print(myDat)
    print(calcShannonEnt(myDat))
    '''
    '''
    myDat, labels = createDataSet()
    print(myDat)
    print(splitDataSet(myDat, 0, 1))
    print(splitDataSet(myDat, 0, 0))
    '''
    '''
    myDat, labels = createDataSet()
    print(chooseBestFeatureToSplit(myDat))
    print(myDat)
    '''
    '''
    myDat, labels = createDataSet()
    myTree = createTree(myDat, labels)
    print(myTree)
    '''
    """
    myDat, labels = createDataSet()
    print(labels)
    myTree = treePlotter.retrieveTree(0)
    print(myTree)
    print(classify(myTree, labels, [1, 0]))
    print(classify(myTree, labels, [1, 1]))
    """
    '''
    myTree = treePlotter.retrieveTree(0)
    storeTree(myTree, 'classifierStorage.txt')
    grabTree('classifierStorage.txt')
    '''

    # with open('lenses.txt') as fr:
    fr = open('lenses.txt')
    lenses = [inst.strip().split('\t') for inst in fr.readlines()]
    lensesLables = ['age', 'prescript', 'astigmatic', 'tearRate']
    lensesTree = createTree(lenses, lensesLables)
    print(lensesTree)
    treePlotter.createPlot(lensesTree)




if __name__ == '__main__':
    main()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  1. 在Python中使用Matplotlib注解绘制树形结构(treePlotter.py)
import matplotlib.pyplot as plt
from pylab import mpl

# 用以显示中文
mpl.rcParams['font.sans-serif'] = ['FangSong']

'''
使用文本注解绘制树节点
'''
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.axl.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt,
                            textcoords='axes fraction', va="center", ha="center",
                            bbox=nodeType, arrowprops=arrow_args)

def createPlot():
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    createPlot.axl = plt.subplot(111, frameon=True)
    plotNode('决策节点', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('叶节点', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.switch_backend('agg')
    plt.show()

def getNumLeafs(myTree):
    '''
    遍历整棵树,累计叶子节点的个数,并返回该值
    :param myTree:
    :return:
    '''
    numLeafs = 0
    # in the py3, type(myTree.keys()) is dict_keys.
    # It can be directed used for iteration, but index is not suitable.
    # in the py2, type(myTree.keys()) is list.
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs

def getTreeDepth(myTree):
    '''
    计算遍历过程中遇到判断节点的个数
    :param myTree:
    :return:
    '''
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth

def retrieveTree(i):
    listOfTrees = [{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                   {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                   ]
    return listOfTrees[i]

def plotMidText(cntrPt, parentPt, txtString):
    '''
    在父子节点间填充文本信息
    :param cntrPt:
    :param parentPt:
    :param txtString:
    :return:
    '''
    xMid = (parentPt[0] - cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1])/2.0 + cntrPt[1]
    createPlot.axl.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt):
    '''
    绘制树形图
    plotTree.xOff、plotTree.yOff:全局变量,追踪已绘制的节点位置
    :param myTree:
    :param parentPt:
    :param nodeTxt:
    :return:
    '''
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)  # 计算宽与高
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)  # 标记子节点属性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD  # 减少y偏移,自顶向下绘制图形,一次递减y的坐标
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff),cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD


def createPlot(inTree):
    '''
    创建绘图区,计算树图形的尺寸,并调用递归函数plotTree()
    :param inTree:
    :return:
    '''
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.axl = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126

运行tree.py后的结果
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/884275
推荐阅读
相关标签
  

闽ICP备14008679号