当前位置:   article > 正文

Aubo 协作机械臂正逆运动学包-python 版本(二)_auboi5的正运动学矩阵

auboi5的正运动学矩阵

简介

Aubo 协作机械臂正逆运动学包-python 版本(一)这篇博文已经对奥博协作机械臂正逆运动学进行了求解。由于代码相对较长,就分开两个博文分别更新。本文主要会根据官方代码,及官方推荐的最优选解器更新一个Python版本的正运动学包。这里最优选解器的核心和UR的一样,都是选择和参考关节空间最接近的一组解作为最优解。文中代码喜欢的可以直接拿去使用,有问题或者对于代码不理解的地方,欢迎添加关注和微信公众号询问。

代码如下:

#!/usr/bin/env python 
# -*- coding: utf-8 -*-
from math import *
import numpy
"""
a2 = 0.266;
a3 = 0.2565;
d1 = 0.157;
d2 = 0.119;
d5 = 0.1025;
d6 = 0.094;
#endif

#ifdef AUBO_I3s_PARAMS
a2 = 0.229;
a3 = 0.2015;
d1 = 0.1395;
d2 = 0.11055;
d5 = 0.08955;
d6 = 0.09055;
#endif

#define AUBO_I5_PARAMS
#ifdef AUBO_I5_PARAMS
a2 =  0.408;
a3 =  0.376;
d1 =  0.122;
d2 =  0.1215;
d5 =  0.1025;
d6 =  0.094;
#endif

#ifdef AUBO_I5s_PARAMS
a2 = 0.245;
a3 = 0.215;
d1 = 0.1215;
d2 = 0.1215;
d5 = 0.1025;
d6 = 0.094;
#endif

#ifdef AUBO_I5l_PARAMS
a2 = 0.608;
a3 = 0.6395;
d1 = 0.1215;
d2 = 0.1215;
d5 = 0.1025;
d6 = 0.094;
#endif

#ifdef AUBO_I7_PARAMS
a2 = 0.552;
a3 = 0.495;
d1 = 0.1632;
d2 = 0.178;
d5 = 0.1025;
d6 = 0.094;
#endif


#ifdef AUBO_I10_PARAMS
a2 = 0.647;
a3 = 0.6005;
d1 = 0.1632;
d2 = 0.2013;
d5 = 0.1025;
d6 = 0.094;
"""
class Aubo_kinematics():
    def __init__(self):
        self.a2 =  0.408
        self.a3 =  0.376
        self.d1 =  0.122
        self.d2 =  0.1215
        self.d5 =  0.1025
        self.d6 =  0.094
        self.ZERO_THRESH = 1e-4
        self.ARM_DOF=6
    def degree_to_rad(self,q):
        temp=[]
        for i in range(len(q)):
            temp.append(q[i]*pi/180)
        return temp
    def antiSinCos(self,sA,cA):
    
        eps = 1e-8
        angle = 0
        if((abs(sA) < eps)and(abs(cA) < eps)):
        
            return 0
        
        if(abs(cA) < eps):
            angle = pi/2.0*self.SIGN(sA)
        elif(abs(sA) < eps):
        
            if (self.SIGN(cA) == 1):
                angle = 0
            else:
                angle = pi
        
        else:
        
            angle = atan2(sA, cA)
        

        return angle
    def SIGN(self,x):
        return (x > 0) - (x < 0)
    
    def aubo_forward(self,q):
        q=self.degree_to_rad(q)
        T=[]
        for i in range(16):
            T.append(0)
        # print q
        q1 = q[0]
        q2 = q[1]
        q3 = q[2]
        q4 = q[3]
        q5 = q[4]
        q6 = q[5]
        C1 = cos(q1)
        C2 = cos(q2)
        C4 = cos(q4)
        C5 = cos(q5)
        C6 = cos(q6)
        C23 = cos(q2 - q3)
        C234 = cos(q2 - q3 + q4)
        C2345 = cos(q2 - q3 + q4 - q5)
        C2345p = cos(q2 - q3 + q4 + q5)
        S1 = sin(q1)
        S2 = sin(q2)
        S4 = sin(q4)
        S5 = sin(q5)
        S6 = sin(q6)
        S23 = sin(q2 - q3)
        S234 = sin(q2 - q3 + q4)

        T[0] = -C6 * S1 * S5 + C1 * (C234 * C5 * C6 - S234 * S6)
        T[1]= S1 * S5 * S6 - C1 * (C4 * C6 * S23 + C23 * C6 * S4 + C234 * C5 * S6)
        T[2] = C5 * S1 + C1 * C234 * S5
        T[3] = (self.d2 + C5 * self.d6) * S1 - C1 * (self.a2 * S2 + (self.a3 + C4 * self.d5) * S23 + C23 * self.d5 * S4 - C234 * self.d6 * S5)

        T[4] = C234 * C5 * C6 * S1 + C1 * C6 * S5 - S1 * S234 * S6
        T[5] = -C6 * S1 * S234 - (C234 * C5 * S1 + C1 * S5) * S6
        T[6] = -C1 * C5 + C234 * S1 * S5
        T[7] = -C1 * (self.d2 + C5 * self.d6) - S1 * (self.a2 * S2 + (self.a3 + C4 * self.d5) * S23 + C23 * self.d5 * S4 - C234 * self.d6 * S5)

        T[8] = C5 * C6 * S234 + C234 * S6
        T[9] = C234 * C6 - C5 * S234 * S6
        T[10] = S234 * S5
        T[11] = self.d1 + self.a2 * C2 + self.a3 * C23 + self.d5 * C234 + self.d6 * C2345/2 - self.d6 * C2345p / 2
        T[12]=0
        T[13]=0
        T[14]=0
        T[15]=1
        return T
    def aubo_inverse(self,T):
        q_reslut_dic={}
        q_reslut=[]
        singularity = False

        num_sols = 0
        nx = T[0]
        ox = T[1]
        ax = T[2]
        px = T[3]

        ny = T[4]
        oy = T[5]
        ay = T[6] 
        py = T[7]
        nz = T[8]
        oz = T[9] 
        az = T[10] 
        pz = T[11]

        #  shoulder rotate joint (q1) //
        q1=[0,0]

        A1 = self.d6 * ay - py
        B1 = self.d6 * ax - px
        R1 = A1 * A1 + B1 * B1 - self.d2 * self.d2


        if R1 < 0.0:
            return num_sols
        else:
            R12 = sqrt(R1)
            q1[0] =  self.antiSinCos(A1, B1) -  self.antiSinCos(self.d2, R12)
            q1[1] =  self.antiSinCos(A1, B1) -  self.antiSinCos(self.d2, -R12)
            for i in range(len(q1)):
            
                while q1[i] > pi:
                    q1[i] -= 2 * pi
                while q1[i] < -pi:
                    q1[i] += 2 * pi
            
        

        #// wrist 2 joint (q5) //
        q5=[[0,0],[0,0]]

        for i in range(len(q5)):
        

            C1 = cos(q1[i])
            S1 = sin(q1[i])
            B5 = -ay * C1 + ax * S1
            M5 = (-ny * C1 + nx * S1)
            N5 = (-oy * C1 + ox * S1)
            R5 = sqrt(M5 * M5 + N5 * N5)

            q5[i][0] = self.antiSinCos(R5, B5)
            q5[i][1] = self.antiSinCos(-R5, B5)
        

        #

        #// wrist 3 joint (q6) //
        q6=0

        q3=[0,0]
        q2=[0,0]
        q4=[0,0]
        for i in range(len(q3)):
        
            for j in range(len(q3)):
            
                #// wrist 3 joint (q6) //
                C1 = cos(q1[i])
                S1 = sin(q1[i])
                S5 = sin(q5[i][j])

                A6 = (-oy * C1 + ox * S1)
                B6 = (ny * C1 - nx * S1)

                if fabs(S5) < self.ZERO_THRESH:# //the condition is only dependent on q1
                
                    singularity = True
                    break
                else:
                    q6 = self.antiSinCos(A6 * S5, B6 * S5)

                #/// joints (q3,q2,q4) //
                C6 = cos(q6)
                S6 = sin(q6)

                pp1 = C1 * (ax * self.d6 - px + self.d5 * ox * C6 + self.d5 * nx * S6) + S1 * (ay * self.d6 - py + self.d5 * oy * C6 + self.d5 * ny * S6)
                pp2 = -self.d1 - az * self.d6 + pz - self.d5 * oz * C6 - self.d5 * nz * S6
                B3 = (pp1 * pp1 + pp2 * pp2 - self.a2 * self.a2 - self.a3 * self.a3) / (2 * self.a2 * self.a3)


                if((1 - B3 * B3) < self.ZERO_THRESH):
                    singularity = True
                    continue
                else:
                    Sin3 = sqrt(1 - B3 * B3)
                    q3[0] = self.antiSinCos(Sin3, B3)
                    q3[1] = self.antiSinCos(-Sin3, B3)

                for k in range(len(q3)):
                

                    C3 = cos(q3[k])
                    S3 = sin(q3[k])
                    A2 = pp1 * (self.a2 + self.a3 * C3) + pp2 * (self.a3 * S3)
                    B2 = pp2 * (self.a2 + self.a3 * C3) - pp1 * (self.a3 * S3)

                    q2[k] = self.antiSinCos(A2, B2)
                    C2 = cos(q2[k])
                    S2 = sin(q2[k])

                    A4 = -C1 * (ox * C6 + nx * S6) - S1 * (oy * C6 + ny * S6)
                    B4 = oz * C6 + nz * S6
                    A41 = pp1 - self.a2 * S2
                    B41 = pp2 - self.a2 * C2

                    q4[k] = self.antiSinCos(A4, B4) - self.antiSinCos(A41, B41)
                    while(q4[k] > pi):
                        q4[k] -= 2 * pi
                    while(q4[k] < -pi):
                        q4[k] += 2 * pi
                    q_reslut=[q1[i],q2[k],q3[k],q4[k],q5[i][j],q6]

                    q_reslut_dic.update({num_sols:q_reslut})
                    num_sols+=1
                
        return q_reslut_dic,num_sols
        """
        The Frobenius norm, sometimes also called the Euclidean norm (a term unfortunately also used for the vector L^2-norm), 
        is matrix norm of an m×n matrix A defined as the square root of the sum of the absolute squares of its elements,
        """
    def List_Frobenius_Norm(self,list_a,list_b):
        new_list=[]
        if len(list_a)==len(list_b):
            for i in range(len(list_a)):
                new_list.append(abs(list_a[i]-list_b[i])**2)
        else:
            print("please make sure the list has the same length")
        
        return sqrt(self.sum_list(new_list))
    def sum_list(self,list_data):
        sum_data=0
        for i in range(len(list_data)):
            sum_data+=list_data[i]
        return sum_data
    # //choose solution ;input all q_sols,and last q_old;
    # //out put the nearest q solution;
    # /**
    #  * @brief chooseIKonRefJoint , choose mode == 0;
    #  * @param q_sols rad
    #  * @param q_ref
    #  * @param q_choose
    #  * @return
    #  */
    def chooseIKonRefJoint(self,q_sols,q_ref):
    
        nn = len(q_sols)
        if(nn == 0):
            return False,[]
        # print "nn---",nn
        sum_data = self.List_Frobenius_Norm(q_ref,q_sols[0])
        err=0
        index = 0
        for i in range(len(q_sols)):
        
            err = self.List_Frobenius_Norm(q_ref,q_sols[i])
            # print "err",err
            if(err < sum_data):
                index = i
                sum_data = err
            
        # print sum_data
        q_choose = q_sols[index]

        return True,q_choose
    """aubo rotation joint:-175 degree/175 degree,here is rad I wanna take a break so use degree"""
    def selectIK(self,q_sols,AngleLimit):
        q_sols_selected={}
        N = len(q_sols)
        # print "selectIK ---N---",N
        if( N == 0):
            return False,{}
        num = 0
        valid = True
        for i in range(N):
        
            valid = True;
            for j in range(self.ARM_DOF):
            #drop greater than offical degree
                if(q_sols[i][j] > AngleLimit[j][1] or q_sols[i][j] < AngleLimit[j][0]):
                    valid = False
                    break
                
            #delete the sols about joint angular increase 2*pi greater than the legal angular
            if(valid):
                temp=q_sols[i]
                temp_1=q_sols[i]
                for j in range(self.ARM_DOF):
                    temp[j] += 2*pi
                    temp_1[j]-=2*pi
                    if temp[j]>AngleLimit[j][1] or temp_1[j]<AngleLimit[j][0]:
                        valid = False
                        break
                if valid:
                    q_sols_selected.update({num:q_sols[i]})
                    num+=1

        num_sols = num;

        if(num > 0):
            return True,q_sols_selected
        else:
            return False,{}
    

    def GetInverseResult(self,T_target,q_ref):
    
        num_sols = 0

        maxq = 175.0/180.0*pi
        AngleLimit = [(-maxq,maxq),(-maxq,maxq),(-maxq,maxq),(-maxq,maxq),(-maxq,maxq),(-maxq,maxq)]

        #inverse and remove zero list
        q_sols_all,num_sols = self.aubo_inverse(T_target)
        
        if(len(q_sols_all) != 0):
            for i in q_sols_all:
                print("num:"+str(i)+' '+"sols",q_sols_all[i])
            #remove not in limited data 
            ret2,q_sols_inlimit = self.selectIK(q_sols_all, AngleLimit)
            # print "q_sols_inlimit",q_sols_inlimit
            if((len(q_sols_inlimit) != 0) and (True == ret2)):
            
                ret3,q_result = self.chooseIKonRefJoint(q_sols_inlimit, q_ref)

                if(True == ret3):
                
                    print(" find solution choose  ")
                    return q_result
                
                else:
                
                    print(" No solution choose  ")
            else:
            
                print("no valid sols ")

            
        
        else:
        
            print("inverse result num is 0")
            # return False
        
    
def main():
    ak47=Aubo_kinematics()
    # print ak47.aubo_forward([-3.3364,12.406,-81.09,-91.207,-86.08,0.164])
    # print numpy.matrix(ak47.aubo_forward([-3.3364,12.406,-81.09,-91.207,-86.08,0.164])).reshape((4,4))
    tt=[0.010016939985065143, -0.039901099098502056, -0.9991534232559417, -0.3, -0.999934201568705, 0.005186605233011846, -0.010231894219208601, -0.09507448660946277, 0.005590478198847001, 0.999190172798396, -0.039846519755429126, 0.5962177031402299, 0, 0, 0, 1]
    # tt=[1.0, 0.0, 0.0, -0.4, 0.0, -1.0, -0.0, -0.8500000000000001, 0.0, 0.0, -1.0, -0.4, 0.0, 0.0, 0.0, 1.0]
    # tt=[1.0, 0.0, 0.0, -0.4, 0.0, -1.0, -0.0, -0.4500000000000001, 0.0, 0.0, -1.0, -0.4, 0.0, 0.0, 0.0, 1.0]
    # q_dict,num=ak47.aubo_inverse(tt)
    # print q_dict,num
    # for i in range(len(q_dict)):
    #     print i,q_dict[i]
    # print ak47.degree_to_rad([-3.3364,12.406,-81.09,-91.207,-86.08,0.164])
    print ak47.GetInverseResult(tt,ak47.degree_to_rad([-3.3364,12.406,-81.09,-91.207,-86.08,0.164]))
if __name__=="__main__":
    main()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432

最后

写代码不易,转载请注明出处,有问题的可以咨询,但是不一定保证快速响应。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/900378
推荐阅读
相关标签
  

闽ICP备14008679号