赞
踩
主要是bert源码当中的adam是简化版本的,这里给出完整版的adamWeightDecay
- # bert源码中的AdamWeightDecayOptimizer
- class AdamWeightDecayOptimizer(tf.train.Optimizer):
- """A basic Adam optimizer that includes "correct" L2 weight decay."""
-
- def __init__(self,
- learning_rate,
- weight_decay_rate=0.0,
- beta_1=0.9,
- beta_2=0.999,
- epsilon=1e-6,
- exclude_from_weight_decay=None,
- name="AdamWeightDecayOptimizer"):
- """Constructs a AdamWeightDecayOptimizer."""
- super(AdamWeightDecayOptimizer, self).__init__(False, name)
-
- self.learning_rate = learning_rate
- self.weight_decay_rate = weight_decay_rate
- self.beta_1 = beta_1
- self.beta_2 = beta_2
- self.epsilon = epsilon
- self.exclude_from_weight_decay = exclude_from_weight_decay
-
- def apply_gradients(self, grads_and_vars, global_step=None, name=None):
- """See base class."""
- assignments = []
- for (grad, param) in grads_and_vars:
- if grad is None or param is None:
- continue
-
- param_name = self._get_variable_name(param.name)
-
- m = tf.get_variable(
- name=param_name + "/adam_m",
- shape=param.shape.as_list(),
- dtype=tf.float32,
- trainable=False,
- initializer=tf.zeros_initializer())
- v = tf.get_variable(
- name=param_name + "/adam_v",
- shape=param.shape.as_list(),
- dtype=tf.float32,
- trainable=False,
- initializer=tf.zeros_initializer())
-
- # Standard Adam update.
- next_m = (
- tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
- next_v = (
- tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
- tf.square(grad)))
-
- update = next_m / (tf.sqrt(next_v) + self.epsilon)
-
- # Just adding the square of the weights to the loss function is *not*
- # the correct way of using L2 regularization/weight decay with Adam,
- # since that will interact with the m and v parameters in strange ways.
- #
- # Instead we want ot decay the weights in a manner that doesn't interact
- # with the m/v parameters. This is equivalent to adding the square
- # of the weights to the loss with plain (non-momentum) SGD.
- if self._do_use_weight_decay(param_name):
- update += self.weight_decay_rate * param
-
- update_with_lr = self.learning_rate * update
-
- next_param = param - update_with_lr
-
- assignments.extend(
- [param.assign(next_param),
- m.assign(next_m),
- v.assign(next_v)])
- return tf.group(*assignments, name=name)
-
- def _do_use_weight_decay(self, param_name):
- """Whether to use L2 weight decay for `param_name`."""
- if not self.weight_decay_rate:
- return False
- if self.exclude_from_weight_decay:
- for r in self.exclude_from_weight_decay:
- if re.search(r, param_name) is not None:
- return False
- return True
-
- def _get_variable_name(self, param_name):
- """Get the variable name from the tensor name."""
- m = re.match("^(.*):\\d+$", param_name)
- if m is not None:
- param_name = m.group(1)
- return param_name
-
-
- # adam原始论文对应的源码
- # class AdamWeightDecayOptimizer(tf.train.Optimizer):
- # """A basic Adam optimizer that includes "correct" L2 weight decay."""
-
- # def __init__(self,
- # learning_rate,
- # weight_decay_rate=0.0,
- # beta_1=0.9,
- # beta_2=0.999,
- # epsilon=1e-6,
- # exclude_from_weight_decay=None,
- # name="AdamWeightDecayOptimizer"):
- # """Constructs a AdamWeightDecayOptimizer."""
- # super(AdamWeightDecayOptimizer, self).__init__(False, name)
-
- # self.learning_rate = learning_rate
- # self.weight_decay_rate = weight_decay_rate
- # self.beta_1 = beta_1
- # self.beta_2 = beta_2
- # self.epsilon = epsilon
- # self.exclude_from_weight_decay = exclude_from_weight_decay
- # self.learning_rate_t = None
- # self._beta1_t = None
- # self._beta2_t = None
- # self._epsilon_t = None
-
- # def _get_beta_accumulators(self):
- # with ops.init_scope():
- # if tf.executing_eagerly():
- # graph = None
- # else:
- # graph = ops.get_default_graph()
- # return (self._get_non_slot_variable("beta1_power", graph=graph),
- # self._get_non_slot_variable("beta2_power", graph=graph))
-
-
- # def _prepare(self):
- # self.learning_rate_t = ops.convert_to_tensor(
- # self.learning_rate, name='learning_rate')
- # self.weight_decay_rate_t = ops.convert_to_tensor(
- # self.weight_decay_rate, name='weight_decay_rate')
- # self.beta_1_t = ops.convert_to_tensor(self.beta_1, name='beta_1')
- # self.beta_2_t = ops.convert_to_tensor(self.beta_2, name='beta_2')
- # self.epsilon_t = ops.convert_to_tensor(self.epsilon, name='epsilon')
-
- # def _create_slots(self, var_list):
- # first_var = min(var_list, key=lambda x: x.name)
- # self._create_non_slot_variable(initial_value=self.beta_1,
- # name="beta1_power",
- # colocate_with=first_var)
- # self._create_non_slot_variable(initial_value=self.beta_2,
- # name="beta2_power",
- # colocate_with=first_var)
- # for v in var_list:
- # self._zeros_slot(v, 'm', self._name)
- # self._zeros_slot(v, 'v', self._name)
-
- # def _apply_dense(self, grad, var):
- # learning_rate_t = math_ops.cast(
- # self.learning_rate_t, var.dtype.base_dtype)
- # beta_1_t = math_ops.cast(self.beta_1_t, var.dtype.base_dtype)
- # beta_2_t = math_ops.cast(self.beta_2_t, var.dtype.base_dtype)
- # epsilon_t = math_ops.cast(self.epsilon_t, var.dtype.base_dtype)
- # weight_decay_rate_t = math_ops.cast(
- # self.weight_decay_rate_t, var.dtype.base_dtype)
-
- # m = self.get_slot(var, 'm')
- # v = self.get_slot(var, 'v')
- # beta1_power, beta2_power = self._get_beta_accumulators()
- # beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
- # beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
- # learning_rate_t = math_ops.cast(self.learning_rate_t, var.dtype.base_dtype)
- # learning_rate_t = (learning_rate_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
-
- # # Standard Adam update.
- # next_m = (
- # tf.multiply(beta_1_t, m) +
- # tf.multiply(1.0 - beta_1_t, grad))
- # next_v = (
- # tf.multiply(beta_2_t, v) + tf.multiply(1.0 - beta_2_t,
- # tf.square(grad)))
-
- # update = next_m / (tf.sqrt(next_v) + epsilon_t)
-
- # if self._do_use_weight_decay(var.name):
- # update += weight_decay_rate_t * var
-
- # update_with_lr = learning_rate_t * update
-
- # next_param = var - update_with_lr
-
- # return control_flow_ops.group(*[var.assign(next_param),
- # m.assign(next_m),
- # v.assign(next_v)])
-
- # def _resource_apply_dense(self, grad, var):
- # learning_rate_t = math_ops.cast(
- # self.learning_rate_t, var.dtype.base_dtype)
- # beta_1_t = math_ops.cast(self.beta_1_t, var.dtype.base_dtype)
- # beta_2_t = math_ops.cast(self.beta_2_t, var.dtype.base_dtype)
- # epsilon_t = math_ops.cast(self.epsilon_t, var.dtype.base_dtype)
- # weight_decay_rate_t = math_ops.cast(
- # self.weight_decay_rate_t, var.dtype.base_dtype)
-
- # m = self.get_slot(var, 'm')
- # v = self.get_slot(var, 'v')
- # beta1_power, beta2_power = self._get_beta_accumulators()
- # beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
- # beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
- # learning_rate_t = math_ops.cast(self.learning_rate_t, var.dtype.base_dtype)
- # learning_rate_t = (learning_rate_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
-
- # # Standard Adam update.
- # next_m = (
- # tf.multiply(beta_1_t, m) +
- # tf.multiply(1.0 - beta_1_t, grad))
- # next_v = (
- # tf.multiply(beta_2_t, v) + tf.multiply(1.0 - beta_2_t,
- # tf.square(grad)))
-
- # update = next_m / (tf.sqrt(next_v) + epsilon_t)
-
- # if self._do_use_weight_decay(var.name):
- # update += weight_decay_rate_t * var
-
- # update_with_lr = learning_rate_t * update
-
- # next_param = var - update_with_lr
-
- # return control_flow_ops.group(*[var.assign(next_param),
- # m.assign(next_m),
- # v.assign(next_v)])
-
- # def _apply_sparse_shared(self, grad, var, indices, scatter_add):
- # learning_rate_t = math_ops.cast(
- # self.learning_rate_t, var.dtype.base_dtype)
- # beta_1_t = math_ops.cast(self.beta_1_t, var.dtype.base_dtype)
- # beta_2_t = math_ops.cast(self.beta_2_t, var.dtype.base_dtype)
- # epsilon_t = math_ops.cast(self.epsilon_t, var.dtype.base_dtype)
- # weight_decay_rate_t = math_ops.cast(
- # self.weight_decay_rate_t, var.dtype.base_dtype)
-
- # m = self.get_slot(var, 'm')
- # v = self.get_slot(var, 'v')
- # beta1_power, beta2_power = self._get_beta_accumulators()
- # beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
- # beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
- # learning_rate_t = math_ops.cast(self.learning_rate_t, var.dtype.base_dtype)
- # learning_rate_t = (learning_rate_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
-
- # m_t = state_ops.assign(m, m * beta_1_t,
- # use_locking=self._use_locking)
-
- # m_scaled_g_values = grad * (1 - beta_1_t)
- # with ops.control_dependencies([m_t]):
- # m_t = scatter_add(m, indices, m_scaled_g_values)
-
- # v_scaled_g_values = (grad * grad) * (1 - beta_2_t)
- # v_t = state_ops.assign(v, v * beta_2_t, use_locking=self._use_locking)
- # with ops.control_dependencies([v_t]):
- # v_t = scatter_add(v, indices, v_scaled_g_values)
-
- # update = m_t / (math_ops.sqrt(v_t) + epsilon_t)
-
- # if self._do_use_weight_decay(var.name):
- # update += weight_decay_rate_t * var
-
- # update_with_lr = learning_rate_t * update
-
- # var_update = state_ops.assign_sub(var,
- # update_with_lr,
- # use_locking=self._use_locking)
- # return control_flow_ops.group(*[var_update, m_t, v_t])
-
- # def _apply_sparse(self, grad, var):
- # return self._apply_sparse_shared(
- # grad.values, var, grad.indices,
- # lambda x, i, v: state_ops.scatter_add( # pylint: disable=g-long-lambda
- # x, i, v, use_locking=self._use_locking))
-
- # def _resource_scatter_add(self, x, i, v):
- # with ops.control_dependencies(
- # [resource_variable_ops.resource_scatter_add(
- # x.handle, i, v)]):
- # return x.value()
-
- # def _resource_apply_sparse(self, grad, var, indices):
- # return self._apply_sparse_shared(
- # grad, var, indices, self._resource_scatter_add)
-
- # def _do_use_weight_decay(self, param_name):
- # """Whether to use L2 weight decay for `param_name`."""
- # if not self.weight_decay_rate:
- # return False
- # if self.exclude_from_weight_decay:
- # for r in self.exclude_from_weight_decay:
- # if re.search(r, param_name) is not None:
- # return False
- # return True
- # def _finish(self, update_ops, name_scope):
- # # Update the power accumulators.
- # with ops.control_dependencies(update_ops):
- # beta1_power, beta2_power = self._get_beta_accumulators()
- # with ops.colocate_with(beta1_power):
- # update_beta1 = beta1_power.assign(
- # beta1_power * self.beta_1_t, use_locking=self._use_locking)
- # update_beta2 = beta2_power.assign(
- # beta2_power * self.beta_2_t, use_locking=self._use_locking)
- # return control_flow_ops.group(*update_ops + [update_beta1, update_beta2],
- # name=name_scope)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。