赞
踩
本项目是解读开源github的代码,该项目基于Meta最新发布的新一代开源大模型Llama-3开发,是Chinese-LLaMA-Alpaca开源大模型相关系列项目(一期、二期)的第三期。而本项目开源了中文Llama-3基座模型和中文Llama-3-Instruct指令精调大模型。这些模型在原版Llama-3的基础上使用了大规模中文数据进行增量预训练,并且使用精选指令数据进行精调,进一步提升了中文基础语义和指令理解能力,相比二代相关模型获得了显著性能提升。因此,我是基于该项目解读训练与推理相关原理与内容,并以代码形式带领读者一步一步解读,理解其大语言模型运行机理。而该博客首先给出llama3推理源码相关内容解读,我将按照源码流程给出解读。
我先给出完整的源码,后面推理使用哪些部分代码,我在深度解读。而一些较为简单内容我不在解读了。
if __name__ == '__main__': load_type = torch.float16 # Move the model to the MPS device if available if torch.backends.mps.is_available(): device = torch.device("mps") else: if torch.cuda.is_available(): device = torch.device(0) else: device = torch.device('cpu') print(f"Using device: { device}") if args.tokenizer_path is None: args.tokenizer_path = args.base_model tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] if args.use_vllm: model = LLM(model=args.base_model, tokenizer=args.tokenizer_path, tensor_parallel_size=len(args.gpus.split(',')), dtype=load_type ) generation_config["stop_token_ids"] = terminators generation_config["stop"] = ["<|eot_id|>", "<|end_of_text|>"] else: if args.load_in_4bit or args.load_in_8bit: quantization_config = BitsAndBytesConfig( load_in_4bit=args.load_in_4bit, load_in_8bit=args.load_in_8bit, bnb_4bit_compute_dtype=load_type, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) model = AutoModelForCausalLM.from_pretrained( args.base_model, torch_dtype=load_type, low_cpu_mem_usage=True, device_map='auto', quantization_config=quantization_config if (args.load_in_4bit or args.load_in_8bit) else None, attn_implementation="flash_attention_2" if args.use_flash_attention_2 else "sdpa" ) if device==torch.device('cpu'): model.float() model.eval() # test data if args.data_file is None: examples = sample_data else: with open(args.data_file, 'r') as f: examples = [line.strip() for line in f.readlines()] print("first 10 examples:") for example in examples[:10]: print(example) with torch.no_grad(): if args.interactive: print("Start inference with instruction mode.") print('='*85) print("+ 该模式下仅支持单轮问答,无多轮对话能力。\n" "+ 如要进行多轮对话,请使用llama.cpp") print('-'*85) print("+ This mode only supports single-turn QA.\n" "+ If you want to experience multi-turn dialogue, please use llama.cpp") print('='*85) while True: raw_input_text = input("Input:") if len(raw_input_text.strip())==0: break if args.with_prompt: input_text = generate_prompt(instruction=raw_input_text) else: input_text = raw_input_text if args.use_vllm: output = model.generate([input_text], SamplingParams(**generation_config), use_tqdm=False) response = output[0].outputs[0].text else: inputs = tokenizer(input_text,return_tensors="pt") #add_special_tokens=False ? generation_output = model.generate( input_ids = inputs["input_ids"].to(device), attention_mask = inputs['attention_mask'].to(device), eos_token_id=terminators, pad_token_id=tokenizer.eos_token_id, generation_config = generation_config ) s = generation_output[0] output = tokenizer.decode(s, skip_special_tokens=True) if args.with_prompt: response = output.split("assistant\n\n")[-1].strip() else: response = output print("Response: ",response) print("\n") else: print("Start inference.") results = [] if args.use_vllm: if args.with_prompt is True: inputs = [generate_prompt(example) for example in examples] else: inputs = examples outputs = model.generate(inputs, SamplingParams(**generation_config)) for index, (example, output) in enumerate(zip(examples, outputs)): response = output.outputs[0].text print(f"======={ index}=======") print(f"Input: { example}\n") print(f"Output: { response}\n") results.append({ "Input":example,"Output":response}) else: for index, example in enumerate(examples): if args.with_prompt: input_text = generate_prompt(instruction=example) else: input_text = example inputs = tokenizer(input_text,return_tensors="pt") #add_special_tokens=False ? generation_output = model.generate( input_ids = inputs["input_ids"].to(device), attention_mask = inputs['attention_mask'].to(device), eos_token_id=terminators, pad_token_id=tokenizer.eos_token_id, generation_config = generation_config ) s = generation_output[0] output = tokenizer.decode(s,skip_special_tokens=True) if args.with_prompt: response = output.split("assistant\n\n")[1].strip() else: response = output print(f"======={ index}=======") print(f"Input: { example}\n") print(f"Output: { response}\n") results.append({ "Input":input_text,"Output":response}) dirname = os.path.dirname(args.predictions_file) os.makedirs(dirname,exist_ok=True) with open(args.predictions_file,'w') as f: json.dump(results,f,ensure_ascii=False,indent=2) if args.use_vllm: with open(dirname+'/generation_config.json','w') as f: json.dump(generation_config,f,ensure_ascii=False,indent=2) else: generation_config.save_pretrained('./')
有关tokenzier相关加载可参考博客这里。这里,我直接给出其源码,如下:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
tokenizer.eos_token_id=128009,而terminators=[128009,128009]。
huggingface模型加载可参考博客这里。这里,llama3的模型加载不在介绍,如下源码:
model = AutoModelForCausalLM.from_pretrained(
args.base_model, # 权重路径文件夹
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
quantization_config=quantization_config if (args.load_in_4bit or args.load_in_8bit) else None,
attn_implementation="flash_attention_2" if args.use_flash_attention_2 else "sdpa"
)
if device==torch.device('cpu'):
model.float()
model.eval()
注意:model.eval()为固定权重方式,这是pytorch评估类似。
# test data
if args.data_file is None:
examples = sample_data # ["为什么要减少污染,保护环境?","你有什么建议?"]
else:
with open(args.data_file, 'r') as f:
examples
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。