赞
踩
我之前曾把大模型比作成一位无所不能无所不知且不知疲惫的“大师”。我们在日常工作、学习中等一些通用知识方面的问题,通常情况下,我们均可通过 Prompt 提示词就能从“大师”那里得到期望的结果。
但是,在某些垂直场景的特定任务(包括:个性化服务、内部私有数据等)中,这位“大师”可能就不一定能胜任了:
这个时候,我们可以通过标记好的结构化数据,让“大师”进一步学习(即:微调),通过调整“大师”的知识(即:调整大模型参数),达到处理特定任务的能力。
根据我们需要调整的大模型的参数量,微调技术大致可以分为 2 种:
LoRA(Low-Rank Adaptation)是一种高效的大模型PEFT微调技术,它是通过在预训练模型的关键层(如全连接层和自注意力层)之间添加低秩矩阵来完成微调。这些低秩矩阵的引入使得模型能够适应新的任务,而无需改变原有的大量参数。由于低秩矩阵的参数数量远小于原有层的参数数量,这就大大减少了需要训练的参数总数。
LoRA的优势在于,即使在资源有限的情况下,也可以有效地对大型预训练模型进行微调,使其适应各种下游任务,如文本分类、命名实体识别等。此外,由于 LoRA 的微调通常只需要较少的数据,这也使得它成为小数据集场景下的一个有力工具。
我将通过本教程,基于Qwen2-0.5B开源的预训练大模型,和大家一起进行一次大模型文本分类能力的微调。在 AI 蓬勃发展的今天,期望能通过本教程,与大家一起在我们的 AI 知识库里新增储备微调知识,逐步做到肚里有货,从容不迫。
完成一次完整的大模型微调,大致需要以下几个步骤:
首先,我们需要通过Miniconda安装 Python 依赖库:
# 切换环境
conda activate PY3.12.2
# 安装依赖库
pip install transformers datasets peft accelerate modelscope swanlab
以上 6 个库的主要用途简单介绍:
ModelScope 上有很多公开免费的数据集供我们使用:datasets
本教程我们使用的是一个开放性问题进行分类的数据集:zh_cls_fudan-news
git lfs install
git clone https://www.modelscope.cn/datasets/swift/zh_cls_fudan-news.git
下载完成之后,我们会看到 2 个后缀为.jsonl
的文件:
zh_cls_fudan-news
├── README.md
├── dataset_infos.json
├── test.jsonl
└── train.jsonl
.jsonl
文件一般存储的是多行文本,每一行文本是一个 JSON 格式内容,即是多行 JSON 格式内容组合的文件。
train.jsonl
是训练的输入文件,而test.jsonl
则是训练的验证文件。他们每行 JSON 格式内容都包含text
、category
和output
共 3 个属性,分代表模型输入、可选的分类列表和最终模型输出的分类。
我们对大模型微调的目标,就是希望微调后的大模型能够根据text
和category
组成的提示词,输出正确的output
分类。
本教程中,我使用的是Qwen2-0.5B模型,我们把大模型下载到本地(目录:Qwen2-0.5B
):
git lfs install
git clone https://www.modelscope.cn/qwen/Qwen2-0.5B.git
如果 Git 克隆失败中断,可以继续克隆下载:
cd Qwen2-0.5B
git lfs pull
大模型微调包括:包括加载大模型、数据集格式化处理、LoRA 参数准备等。最后,微调过程我们通过SwanLab可视化界面监控整个微调过程。
我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。如果是第一次使用 SwanLab,则需要注册 SwanLab 账号:https://swanlab.cn,注册成功之后,在用户设置页面复制API Key,在训练开始时需要用到。
为了便于我们查看我们微调的数据,我们还需要创建一个项目(项目名称:Qwen2-FineTuning
):
由于微调涉及到好几步*强烈建议大家使用Jupyter Lab**工具进行代码调试和验证,它可以把整个代码分成多个区块,单个区块可以多次执行。
# Qwen2-0.5B-train.py import json import pandas as pd import torch from datasets import Dataset from modelscope import AutoTokenizer from swanlab.integration.huggingface import SwanLabCallback from peft import LoraConfig, TaskType, get_peft_model from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq import os import swanlab # 权重根目录 BASE_DIR = 'D:\ModelSpace\Qwen2' # 设备名称 device = 'cuda' if torch.cuda.is_available() else 'cpu' # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 数据集处理函数,包括:训练数据集和测试数据集 def dataset_jsonl_transfer(origin_path, new_path): """ 将原始数据集转换为大模型微调所需数据格式的新数据集 """ messages = [] # 读取原JSONL文件 with open(origin_path, "r", encoding="utf-8") as file: for line in file: # 解析每一行原始数据(每一行均是一个JSON格式) data = json.loads(line) text = data["text"] catagory = data["category"] output = data["output"] message = { "input": f"文本:{text},分类选项列表:{catagory}", "output": output, } messages.append(message) # 保存处理后的JSONL文件,每行也是一个JSON格式 with open(new_path, "w", encoding="utf-8") as file: for message in messages: file.write(json.dumps(message, ensure_ascii=False) + "\n") # 在使用数据集训练大模型之前,对每行数据进行预处理 def process_func(example): """ 将数据集进行预处理 """ MAX_LENGTH = 384 input_ids, attention_mask, labels = [], [], [] instruction = tokenizer(f"<|im_start|>system\n你是一个文本分类领域的专家,你会接收到一段文本和几个潜在的分类选项列表,请输出文本内容的正确分类<|im_end|>\n<|im_start|>user\n{example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens response = tokenizer(f"{example['output']}", add_special_tokens=False) input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1 labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] if len(input_ids) > MAX_LENGTH: # 做一个截断 input_ids = input_ids[:MAX_LENGTH] attention_mask = attention_mask[:MAX_LENGTH] labels = labels[:MAX_LENGTH] return { "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels } # 加载预训练模型和分词器 model_dir = os.path.join(BASE_DIR, 'Qwen2-0.5B') tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir, device_map=device, torch_dtype=torch.bfloat16) model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法 # 加载、处理数据集和测试集 train_dataset_path = os.path.join(BASE_DIR, 'zh_cls_fudan-news', 'train.jsonl') test_dataset_path = os.path.join(BASE_DIR, 'zh_cls_fudan-news', 'test.jsonl') train_jsonl_new_path = os.path.join(BASE_DIR, 'train.jsonl') test_jsonl_new_path = os.path.join(BASE_DIR, 'test.jsonl') if not os.path.exists(train_jsonl_new_path): dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path) if not os.path.exists(test_jsonl_new_path): dataset_jsonl_transfer(test_dataset_path, test_jsonl_new_path) # 得到微调数据集 train_df = pd.read_json(train_jsonl_new_path, lines=True) train_ds = Dataset.from_pandas(train_df) train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names) # 创建LoRA配置 config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], inference_mode=False, # 训练模式 r=8, # Lora 秩 lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理 lora_dropout=0.1, # Dropout 比例 ) # 将LoRA应用于模型 model = get_peft_model(model, config) # 创建微调参数 args = TrainingArguments( output_dir=os.path.join(BASE_DIR, 'output', 'Qwen2-0.5B'), per_device_train_batch_size=4, gradient_accumulation_steps=4, logging_steps=10, num_train_epochs=2, save_steps=100, learning_rate=1e-4, save_on_each_node=True, gradient_checkpointing=True, report_to="none", ) # SwanLab微调过程回调数据 swanlab_callback = SwanLabCallback(project="Qwen2-FineTuning", experiment_name="Qwen2-0.5B") trainer = Trainer( model=model, args=args, train_dataset=train_dataset, data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), callbacks=[swanlab_callback], ) # 开始微调 trainer.train() # 模型结果结果评估 def predict(messages, model, tokenizer): text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # 模型评估:获取测试集的前10条测试数据 test_df = pd.read_json(test_jsonl_new_path, lines=True)[:10] test_text_list = [] for index, row in test_df.iterrows(): instruction = row['你是一个文本分类领域的专家,你会接收到一段文本和几个潜在的分类选项列表,请输出文本内容的正确分类'] input_value = row['input'] messages = [ {"role": "system", "content": f"{instruction}"}, {"role": "user", "content": f"{input_value}"} ] response = predict(messages, model, tokenizer) messages.append({"role": "assistant", "content": f"{response}"}) result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}" test_text_list.append(swanlab.Text(result_text, caption=response)) swanlab.log({"Prediction": test_text_list}) swanlab.finish()
以上就是大模型微调的全部代码,微调的总体流程如下:
trust_remote_code=True
代表从本地磁盘加载模型权重output_dir="./output/Qwen2-0.5B"
代表微调之后的权重文件目录),并设置SwanLab回调函数trainer.train()
从原始数据集映射成大模型数据集进度、速度和耗时(共 4000 条数据):
我们启动模型微调后,SwanLab 需要我们输入API Key,输入即可。
我们可以在Jupyter Lab中直接开启看板,非常方便的查看微调情况。
微调完成,可以看到在测试样例评估上,微调后Qwen2大模型能够给出准确的文本分类:
至此,我们已经完成了Qwen2-0.5B大模型的微调工作,接下来就可以使用微调后模型完成特定任务了(文本分类)!
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。