赞
踩
实验目的:分支限界法按广度优先策略遍历问题的解空间树,在遍历过程中,对已经处理的每一个结点根据限界函数估算目标函数的可能取值,从中选取使目标函数取得极值的结点优先进行广度忧先搜索,从而不断调整搜索方向,尽快找到问题的解。因为限界函数常常是基于向题的目标函数而确定的,所以,分支限界法适用于求解最优化问题。本次实验利用分支限界法解决0-1背包问题。
算法核心思想
详细过程可参考文章:0-1背包问题-分支限界法(优先队列分支限界法)_0-1背包问题-优先队列式分支界限法的基础思想和核心步骤-CSDN博客
解空间树:
完整代码:
- import java.util.PriorityQueue;
- //排列树
- class Node implements Comparable<Node> {
- int level; // 当前层级
- int weight; // 当前重量
- int value; // 当前价值
- int bound; // 上界
-
- public Node(int level, int weight, int value, int bound) {
- this.level = level;
- this.weight = weight;
- this.value = value;
- this.bound = bound;
- }
-
- @Override
- public int compareTo(Node other) {
- // 按照bound的降序排列
- return other.bound - this.bound;
- }
- }
-
- public class Knapsack {
- int capacity; // 背包容量
- int n; // 物品数量
- int[] weights; // 物品重量
- int[] values; // 物品价值
- int bestvalue;
-
- public Knapsack(int capacity, int n, int[] weights, int[] values) {
- this.capacity = capacity;
- this.n = n;
- this.weights = weights;
- this.values = values;
- }
-
- public int maxValue() {
- // 初始化优先队列
- PriorityQueue<Node> queue = new PriorityQueue<>();
- queue.add(new Node(0, 0, 0, bound(0, 0,0)));
- int maxValue = 0;
- this.bestvalue = 0;
- while (!queue.isEmpty()) {
- Node node = queue.poll(); // 取出队首元素--扩展节点
- if (node.level == n) { // 达到叶子节点,更新最大值
- maxValue = Math.max(maxValue, node.value);
- } else {
- // 左子树:选择当前物品
- if (node.weight + weights[node.level] <= capacity) {
- int leftbound = bound(node.level + 1, node.weight + weights[node.level] ,node.value + values[node.level]);
- if(this.bestvalue<node.value + values[node.level]){
- this.bestvalue = node.value + values[node.level];
- }
- if (leftbound<this.bestvalue){
- continue;
- }
- queue.add(new Node(node.level + 1, node.weight + weights[node.level],
- node.value + values[node.level],leftbound));
- }
- // 右子树:不选择当前物品
- int rightbound =bound(node.level + 1, node.weight,node.value);
- if (rightbound<this.bestvalue){
- continue;
- }
- queue.add(new Node(node.level + 1, node.weight, node.value,rightbound));
- }
- }
- return maxValue;
- }
-
- // 计算上界函数
- private int bound(int i, int weight,int val) {
- int remainingWeight = capacity - weight; // 剩余重量
- int remainingValue = 0; // 剩余价值
- int j = i;
- for (; j < n; j++) {
- if (weights[j] > remainingWeight) { // 当前物品装不下,跳出循环
- break;
- }
- remainingWeight -= weights[j]; // 减去当前物品的重量
- remainingValue += values[j]; // 加上当前物品的价值
- }
- if (j<n){ //使用了double类型进行除法运算来保留小数部分的价值
- remainingValue = (int) (remainingValue + remainingWeight*(double)(values[j]/weights[j]));
- }
- return remainingValue+val;
- }
-
-
- public static void main(String[] args) {
- //int[] wt = {4,7,5,3};
- //int[] val = {40,42,25,12};
- //必须按照单位单位价值从大到小
- int[] wt = {4,1,1,2,12};
- int[] val = {10,2,1,2,4};
- int capacity = 15;
- int n = wt.length;
- Knapsack knapsack = new Knapsack(capacity,n,wt,val);
- int res = knapsack.maxValue();
- System.out.println(res);
- }
- }
输出结果:15
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。