赞
踩
目录
对于Yolov5模型,华为提供了单独的脚本执行转换,目的通过自定义的Yolov5后处理算子将NMS操作集成到离线模型中,提高推理性能。Yolov5模型转换脚本位于计算库的ascend_yolov5_pt2om,模型转换时使用官方原始yolov5s-v6.1为基础训练的人车非.pt模型,该模型有3个输出。转换工具会自动将3个输出合并为一个输出,并转为onnx模型,之后再转为om模型。默认精度为FP16。
对于INT8,当前转换工具量化后准确率有下降,对于实时性强的场景不适合,暂不使用。
ascend_yolov5_pt2om已上传到csdn资源(你自己的百度网盘里面也有一份)https://download.csdn.net/download/u013171226/89286331?spm=1001.2014.3001.5501
模型转换主要是将.pt模型转为Ascentd可推理的.om模型,包括三种数据类型(fp16、fp32和int8),模型转换过程下。模型转换使用ascend_yolov5_pt2om工程实现。
source /usr/local/Ascend/ascend-toolkit/set_env.sh
- pip install -r requirements.txt
-
- pip install onnx
- pip install onnxruntime==1.6.0
- pip install onnxsim
-
- pip install opc-tool==0.1.0
- pip install decorator
- pip install protobuf==3.20.3
- pip install numpy
bash common/pth2om.sh --version 6.1 --type fp16 --model yolov5_pcb_608_out3 --img_size 608 --class_num 3 --bs 1 --soc Ascend310B1
其中pth2om.sh脚本内容如下,在ascend_yolov5_pt2om文件夹里面有
- ## 帮助信息
- ### === Model Options ===
- ### --version yolov5 tags [2.0/3.1/4.0/5.0/6.0/6.1], default: 6.1
- ### --model yolov5[n/s/m/l/x], default: yolov5s
- ### --bs batch size, default: 4
- ### === Build Options ===
- ### --type data type [fp16/int8], default: fp16
- ### --calib_bs batch size of calibration data (int8 use only), default: 16
- ### === Inference Options ===
- ### --mode infer/val, default: infer
- ### --conf confidence threshold, default: 0.4
- ### --iou NMS IOU threshold, default: 0.5
- ### --output_dir output dir, default: output
- ### === Environment Options ===
- ### --soc soc version [Ascend310/Ascend310P?], default: Ascend310
- ### === Help Options ===
- ### -h print this message
-
- help() {
- sed -rn 's/^### ?//;T;p;' "$0"
- }
-
- ## 参数设置
- GETOPT_ARGS=`getopt -o 'h' -al version:,model:,img_size:,channel_num:,bs:,class_num:,type:,calib_bs:,mode:,conf:,iou:,output_dir:,soc: -- "$@"`
- eval set -- "$GETOPT_ARGS"
- while [ -n "$1" ]
- do
- case "$1" in
- -h) help; exit 0 ;;
- --version) version=$2; shift 2;;
- --model) model=$2; shift 2;;
- --img_size) img_size=$2; shift 2;;
- --channel_num) channel_num=$2; shift 2;;
- --bs) bs=$2; shift 2;;
- --class_num) class_num=$2; shift 2;;
- --type) type=$2; shift 2;;
- --calib_bs) calib_bs=$2; shift 2;;
- --mode) mode=$2; shift 2;;
- --conf) conf=$2; shift 2;;
- --iou) iou=$2; shift 2;;
- --output_dir) output_dir=$2; shift 2;;
- --soc) soc=$2; shift 2;;
- --) break ;;
- esac
- done
-
- if [[ -z $version ]]; then version=6.1; fi
- if [[ -z $model ]]; then model=yolov5s; fi
- if [[ -z $img_size ]]; then img_size=608; fi
- if [[ -z $channel_num ]]; then channel_num=3; fi
- if [[ -z $bs ]]; then bs=4; fi
- if [[ -z $class_num ]]; then class_num=3; fi
- if [[ -z $type ]]; then type=fp16; fi
- if [[ -z $calib_bs ]]; then calib_bs=16; fi
- if [[ -z $mode ]]; then mode=infer; fi
- if [[ -z $conf ]]; then conf=0.4; fi
- if [[ -z $iou ]]; then iou=0.5; fi
- if [[ -z $output_dir ]]; then output_dir=output; fi
- if [[ -z $soc ]]; then echo "error: missing 1 required argument: 'soc'"; exit 1 ; fi
-
- if [[ ${type} == fp16 ]] ; then
- args_info="=== pth2om args === \n version: $version \n model: $model \n bs: $bs \n type: $type \n
- mode: $mode \n conf: $conf \n iou: $iou \n output_dir: $output_dir \n soc: $soc"
- echo -e $args_info
- else
- args_info="=== pth2om args === \nversion: $version \n model: $model \n bs: $bs \n type: $type \n calib_bs: $calib_bs \n
- mode: $mode \n conf: $conf \n iou: $iou \n output_dir: $output_dir \n soc: $soc"
- echo -e $args_info
- fi
-
- if [ ! -d ${output_dir} ]; then
- mkdir ${output_dir}
- fi
-
- ## pt导出om模型
- echo "Starting 修改pytorch源码"
- git checkout . && git checkout v${version}
- git apply v${version}/v${version}.patch
-
- echo "Starting 导出onnx模型并简化"
- if [[ ${version} == 6* ]] ; then
- python3 export.py --weights=${model}.pt --imgsz=${img_size} --batch-size=${bs} --opset=11 --dynamic || exit 1
- else
- python3 models/export.py --weights=${model}.pt --img-size=${img_size} --batch-size=${bs} --opset=11 --dynamic || exit 1
- fi
- python3 -m onnxsim ${model}.onnx ${model}.onnx --dynamic-input-shape --input-shape images:${bs},${channel_num},${img_size},${img_size} || exit 1
- model_tmp=${model}
-
- if [ ${type} == int8 ] ; then
- echo "Starting 生成量化数据"
- python3 common/quantize/generate_data.py --img_info_file=common/quantize/img_info_amct.txt --save_path=amct_data --batch_size=${calib_bs} --img_size=${img_size} || exit 1
-
- if [[ ${version} == 6.1 && ${model} == yolov5[nl] ]] ; then
- echo "Starting pre_amct"
- python3 common/quantize/calibration_scale.py --input=${model}.onnx --output=${model}_cali.onnx --mode=pre_amct || exit 1
-
- echo "Starting onnx模型量化"
- bash common/quantize/amct.sh ${model}_cali.onnx || exit 1
- if [[ -f ${output_dir}/result_deploy_model.onnx ]];then
- mv ${output_dir}/result_deploy_model.onnx ${model}_amct.onnx
- fi
- rm -rf ${model}_cali.onnx
-
- echo "Starting after_amct"
- python3 common/quantize/calibration_scale.py --input=${model}_amct.onnx --output=${model}_amct.onnx --mode=after_amct || exit 1
- else
- echo "Starting onnx模型量化"
- bash common/quantize/amct.sh ${model}.onnx || exit 1
- if [[ -f ${output_dir}/result_deploy_model.onnx ]];then
- mv ${output_dir}/result_deploy_model.onnx ${model}_amct.onnx
- fi
- fi
-
- model_tmp=${model}_amct
- if [[ -f ${output_dir}/result_* ]];then
- rm -rf ${output_dir}/result_result_fake_quant_model.onnx
- rm -rf ${output_dir}/result_quant.json
- fi
- fi
-
- echo "Starting 修改onnx模型,添加NMS后处理算子"
- python3 common/util/modify_model.py --pt=${model}.pt --onnx=${model_tmp}.onnx --img-size=${img_size} --class-num=${class_num} --conf-thres=${conf} --iou-thres=${iou} || exit 1
-
- echo "Starting onnx导出om模型(有后处理)"
- bash common/util/atc.sh infer ${model_tmp}_nms.onnx ${output_dir}/${model_tmp}_nms ${img_size} ${channel_num} ${bs} ${soc} || exit 1
- rm -rf ${model_tmp}_nms.onnx
-
- if [[ ${mode} == val ]] ; then
- echo "Starting onnx导出om模型(无后处理)"
- bash common/util/atc.sh val ${model_tmp}.onnx ${output_dir}/${model_tmp} ${bs} ${soc} || exit 1
- rm -rf ${model_tmp}.onnx
- fi
-
- echo -e "pth导出om模型 Success \n"

然后atc.sh脚本内容如下,在ascend_yolov5_pt2om文件夹里面也有
- mode=$1
- onnx=$2
- om=$3
- img_size=$4
- channel_num=$5
- bs=$6
- soc=$7
-
-
- if [ ${mode} == val ];then
- input_shape="images:${bs},${channel_num},${img_size},${img_size}"
- input_fp16_nodes="images"
- elif [ ${mode} == infer ];then
- input_shape="images:${bs},${channel_num},${img_size},${img_size};img_info:${bs},4"
- input_fp16_nodes="images;img_info"
- fi
-
-
- if [[ ${soc} == Ascend310 ]];then
- atc --model=${onnx} \
- --framework=5 \
- --output=${om}_bs${bs} \
- --input_format=NCHW \
- --input_shape=${input_shape} \
- --log=error \
- --soc_version=${soc} \
- --input_fp16_nodes=${input_fp16_nodes} \
- --output_type=FP16
- fi
-
- if [[ ${soc} == Ascend310B1 ]];then
- atc --model=${onnx} \
- --framework=5 \
- --output=${om}_bs${bs} \
- --input_format=NCHW \
- --input_shape=${input_shape} \
- --log=error \
- --soc_version=${soc} \
- --optypelist_for_implmode="Sigmoid" \
- --op_select_implmode=high_performance \
- --fusion_switch_file=common/util/fusion.cfg \
- --insert_op_conf=aipp_yolov5.cfg
- #--input_fp16_nodes=${input_fp16_nodes}
- #--output_type=FP16
- fi
-
- if [[ ${soc} == Ascend310P? ]];then
- atc --model=${onnx} \
- --framework=5 \
- --output=${om}_bs${bs} \
- --input_format=NCHW \
- --input_shape=${input_shape} \
- --log=error \
- --soc_version=${soc} \
- --optypelist_for_implmode="Sigmoid" \
- --op_select_implmode=high_performance \
- --fusion_switch_file=common/util/fusion.cfg \
- --insert_op_conf=aipp_yolov5.cfg
- #--input_fp16_nodes=${input_fp16_nodes}
- #--output_type=FP16
- fi
-
-
- if [[ ${soc} == Ascend710 ]];then
- atc --model=${onnx} \
- --framework=5 \
- --output=${om}_bs${bs} \
- --input_format=NCHW \
- --input_shape=${input_shape} \
- --log=error \
- --soc_version=${soc} \
- --optypelist_for_implmode="Sigmoid" \
- --op_select_implmode=high_performance \
- --fusion_switch_file=common/util/fusion.cfg
- #--insert_op_conf=aipp_yolov5.cfg
- # --insert_op_conf=aipp.cfg
- # --insert_op_conf=aipp_yolov5.cfg
- fi
-
- if [[ ${soc} == Ascend910 ]];then
- atc --model=${onnx} \
- --framework=5 \
- --output=${om}_bs${bs} \
- --input_format=NCHW \
- --input_shape=${input_shape} \
- --log=error \
- --soc_version=${soc} \
- --optypelist_for_implmode="Sigmoid" \
- --op_select_implmode=high_performance \
- --fusion_switch_file=common/util/fusion.cfg
- #--insert_op_conf=aipp_yolov5.cfg
- # --insert_op_conf=aipp.cfg
- # --insert_op_conf=aipp_yolov5.cfg
- fi

上述模型转换都是基于.pt文件转换为.om模型文件。另外,还可以直接应用atc工具将onnx模型转为.om模型。
bash common/util/atc.sh infer yolov5_pcb_608_out3_nms.onnx output/yolov5_pcb_608_out3_nms 1 Ascend310B1
或者直接使用atc工具转换
(1)人车非模型
atc --model=yolov5_pcb_608_out3_nms.onnx \
--framework=5 \
--output=yolov5_pcb_608_out3_bs4 \
--input_format=NCHW \
--input_shape="images:1,3,640,640;img_info:1,4" \
--log=error \
--soc_version=Ascend710 \
--optypelist_for_implmode="Sigmoid" \
--op_select_implmode=high_performance
(2)行人结构化模型
atc --model=pedes_structure.onnx \
--framework=5 \
--output=pedes_structure \
--input_format=NCHW \
--input_shape="x:-1,3,224,224" \
--dynamic_batch_size="1,2,4,8" \
--log=error \
--soc_version=Ascend710 \
--optypelist_for_implmode="Sigmoid" \
--op_select_implmode=high_performance
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。