赞
踩
目录
- from ultralytics import YOLO
-
- # Load a model
- model = YOLO(r'G:\Yolov8\yolov8-detect-pt\yolov8n.pt') # load an official model
- # model = YOLO('path/to/best.pt') # load a custom trained
-
- # Export the model
- # model.export(format='onnx')
- model.export(format='onnx')
运行得到onnx
验证导出的onnx是否可用。运行正常的话,保存的图片有检测出的物体。
- from ultralytics import YOLO
- import glob
- import os
- # Load a model
- model = YOLO(r'G:\Yolov8\yolov8-detect-pt\yolov8n.onnx') # load an official model
-
- # Predict with the model
- imgpath = r'G:\Yolov8\ultralytics-main-detect\imgs'
- imgs = glob.glob(os.path.join(imgpath,'*.jpg'))
- for img in imgs:
- model.predict(img, save=True)
本文在windows系统下配置的Docker环境。大家可自行配置。
如果你的电脑中以前没用过docker,需要先安装docker。
进入到horizon_xj3_open_explorer_v1.8.5_20211224\ddk\samples\ai_toolchain\horizon_model_convert_sample\04_detection路径下,创建一个mapper文件夹(个人文件管理,可忽略),再创建一个08_yolov8文件夹(可自行命名), 在路径下创建onnx_model文件夹,将onnx放入
把在第一步得到的yolov8n.onnx模型,放到指定位置:
然后在mapper文件夹下,新建一个01_check.sh文件,内容如下:
- #!/usr/bin/env sh
-
- set -e -v
- cd $(dirname $0) || exit
-
- # 模型类型,本文以onnx为例
- model_type="onnx"
- # 要检查的onnx模型位置
- onnx_model="./onnx_model/yolov8n.onnx"
- # 检查输出日志,放到哪里去
- # 虽然它还是放到了与01_check.sh同级目录下(感觉像小bug)
- output="./model_output/yolov8_checker.log"
- # 用的什么架构,不用改
- march="bernoulli2"
-
- hb_mapper checker --model-type ${model_type} \
- --model ${onnx_model} \
- --output ${output} --march ${march}
cd到mapper文件夹下,执行命令:
sh 01_check.sh
挑选一部分图片(20-100)放在mapper文件夹下
在mapper文件夹下,新建一个02_preprocess.sh文件,内容如下:
- #!/usr/bin/env bash
- # Copyright (c) 2020 Horizon Robotics.All Rights Reserved.
- #
- # The material in this file is confidential and contains trade secrets
- # of Horizon Robotics Inc. This is proprietary information owned by
- # Horizon Robotics Inc. No part of this work may be disclosed,
- # reproduced, copied, transmitted, or used in any way for any purpose,
- # without the express written permission of Horizon Robotics Inc.
-
- set -e -v
- cd $(dirname $0) || exit
-
- python3 ../../../data_preprocess.py \
- --src_dir data/pcd \
- --dst_dir ./pcd_rgb_f32 \
- --pic_ext .rgb \
- --read_mode opencv
data_preprocess.py在下图位置(官方自带)
在mapper文件夹下,新建一个preprocess.py文件,内容如下:
target_size=(640, 640) -> 调整输出的size
- # Copyright (c) 2021 Horizon Robotics.All Rights Reserved.
- #
- # The material in this file is confidential and contains trade secrets
- # of Horizon Robotics Inc. This is proprietary information owned by
- # Horizon Robotics Inc. No part of this work may be disclosed,
- # reproduced, copied, transmitted, or used in any way for any purpose,
- # without the express written permission of Horizon Robotics Inc.
-
- import sys
- sys.path.append("../../../01_common/python/data/")
- from transformer import *
- from dataloader import *
-
-
- def calibration_transformers():
- transformers = [
- PadResizeTransformer(target_size=(640, 640)),
- HWC2CHWTransformer(),
- BGR2RGBTransformer(data_format="CHW"),
- ]
- return transformers
-
-
- def infer_transformers(input_shape, input_layout="NHWC"):
- transformers = [
- PadResizeTransformer(target_size=input_shape),
- BGR2RGBTransformer(data_format="HWC"),
- RGB2NV12Transformer(data_format="HWC"),
- NV12ToYUV444Transformer(target_size=input_shape,
- yuv444_output_layout=input_layout[1:]),
- ]
- return transformers
-
-
- def infer_image_preprocess(image_file, input_layout, input_shape):
- transformers = infer_transformers(input_shape, input_layout)
- origin_image, processed_image = SingleImageDataLoaderWithOrigin(
- transformers, image_file, imread_mode="opencv")
- return origin_image, processed_image
-
-
- def eval_image_preprocess(image_path, annotation_path, input_shape,
- input_layout):
- transformers = infer_transformers(input_shape, input_layout)
- data_loader = COCODataLoader(transformers,
- image_path,
- annotation_path,
- imread_mode='opencv')
-
- return data_loader
运行
sh 02_preprocess.sh
准备好处理后的图像数据,下面就是获取能够在开发板上运行的模型了,地平线在开发板上运行的模型后缀为.bin,故在此称为.bin模型。
这一步需要准备两个文件,一个是03_build.sh,一个是yolov8_config.yaml,两个文件均放于mapper文件夹下。
注意:运行03_build.sh之前要保证前一步生成的rgb大小要和yolov8_config.yaml文件设置的输入尺寸一致(模型输入)。
03_build.sh
- #!/bin/bash
-
-
- set -e -v
- cd $(dirname $0)
- config_file="./yolov8_config.yaml"
- model_type="onnx"
- # build model
- hb_mapper makertbin --config ${config_file} \
- --model-type ${model_type}
yolov8_config.yaml
- # Copyright (c) 2020 Horizon Robotics.All Rights Reserved.
- #
- # The material in this file is confidential and contains trade secrets
- # of Horizon Robotics Inc. This is proprietary information owned by
- # Horizon Robotics Inc. No part of this work may be disclosed,
- # reproduced, copied, transmitted, or used in any way for any purpose,
- # without the express written permission of Horizon Robotics Inc.
-
- # 模型转化相关的参数
- # ------------------------------------
- # model conversion related parameters
- model_parameters:
- # Onnx浮点网络数据模型文件
- # -----------------------------------------------------------
- # the model file of floating-point ONNX neural network data
- onnx_model: 'onnx_model/yolov8n.onnx'
-
- # 适用BPU架构
- # --------------------------------
- # the applicable BPU architecture
- march: "bernoulli2"
-
- # 指定模型转换过程中是否输出各层的中间结果,如果为True,则输出所有层的中间输出结果,
- # --------------------------------------------------------------------------------------
- # specifies whether or not to dump the intermediate results of all layers in conversion
- # if set to True, then the intermediate results of all layers shall be dumped
- layer_out_dump: False
-
- # 日志文件的输出控制参数,
- # debug输出模型转换的详细信息
- # info只输出关键信息
- # warn输出警告和错误级别以上的信息
- # ----------------------------------------------------------------------------------------
- # output control parameter of log file(s),
- # if set to 'debug', then details of model conversion will be dumped
- # if set to 'info', then only important imformation will be dumped
- # if set to 'warn', then information ranked higher than 'warn' and 'error' will be dumped
- log_level: 'debug'
-
- # 模型转换输出的结果的存放目录
- # -----------------------------------------------------------
- # the directory in which model conversion results are stored
- working_dir: 'model_output'
-
- # 模型转换输出的用于上板执行的模型文件的名称前缀
- # -----------------------------------------------------------------------------------------
- # model conversion generated name prefix of those model files used for dev board execution
- output_model_file_prefix: 'yolov8n_rgb'
-
- # 模型输入相关参数, 若输入多个节点, 则应使用';'进行分隔, 使用默认缺省设置则写None
- # --------------------------------------------------------------------------
- # model input related parameters,
- # please use ";" to seperate when inputting multiple nodes,
- # please use None for default setting
- input_parameters:
-
- # (选填) 模型输入的节点名称, 此名称应与模型文件中的名称一致, 否则会报错, 不填则会使用模型文件中的节点名称
- # --------------------------------------------------------------------------------------------------------
- # (Optional) node name of model input,
- # it shall be the same as the name of model file, otherwise an error will be reported,
- # the node name of model file will be used when left blank
- input_name: ""
-
- # 网络实际执行时,输入给网络的数据格式,包括 nv12/rgb/bgr/yuv444/gray/featuremap,
- # ------------------------------------------------------------------------------------------
- # the data formats to be passed into neural network when actually performing neural network
- # available options: nv12/rgb/bgr/yuv444/gray/featuremap,
- input_type_rt: 'nv12'
-
- # 网络实际执行时输入的数据排布, 可选值为 NHWC/NCHW
- # 若input_type_rt配置为nv12,则此处参数不需要配置
- # ------------------------------------------------------------------
- # the data layout formats to be passed into neural network when actually performing neural network, available options: NHWC/NCHW
- # If input_type_rt is configured as nv12, then this parameter does not need to be configured
- #input_layout_rt: ''
-
- # 网络训练时输入的数据格式,可选的值为rgb/bgr/gray/featuremap/yuv444
- # --------------------------------------------------------------------
- # the data formats in network training
- # available options: rgb/bgr/gray/featuremap/yuv444
- input_type_train: 'rgb'
-
- # 网络训练时输入的数据排布, 可选值为 NHWC/NCHW
- # ------------------------------------------------------------------
- # the data layout in network training, available options: NHWC/NCHW
- input_layout_train: 'NCHW'
-
- # (选填) 模型网络的输入大小, 以'x'分隔, 不填则会使用模型文件中的网络输入大小,否则会覆盖模型文件中输入大小
- # -------------------------------------------------------------------------------------------
- # (Optional)the input size of model network, seperated by 'x'
- # note that the network input size of model file will be used if left blank
- # otherwise it will overwrite the input size of model file
- input_shape: '1x3x640x640'
-
- # 网络实际执行时,输入给网络的batch_size, 默认值为1
- # ---------------------------------------------------------------------
- # the data batch_size to be passed into neural network when actually performing neural network, default value: 1
- #input_batch: 1
-
- # 网络输入的预处理方法,主要有以下几种:
- # no_preprocess 不做任何操作
- # data_mean 减去通道均值mean_value
- # data_scale 对图像像素乘以data_scale系数
- # data_mean_and_scale 减去通道均值后再乘以scale系数
- # -------------------------------------------------------------------------------------------
- # preprocessing methods of network input, available options:
- # 'no_preprocess' indicates that no preprocess will be made
- # 'data_mean' indicates that to minus the channel mean, i.e. mean_value
- # 'data_scale' indicates that image pixels to multiply data_scale ratio
- # 'data_mean_and_scale' indicates that to multiply scale ratio after channel mean is minused
- norm_type: 'data_scale'
-
- # 图像减去的均值, 如果是通道均值,value之间必须用空格分隔
- # --------------------------------------------------------------------------
- # the mean value minused by image
- # note that values must be seperated by space if channel mean value is used
- mean_value: ''
-
- # 图像预处理缩放比例,如果是通道缩放比例,value之间必须用空格分隔
- # ---------------------------------------------------------------------------
- # scale value of image preprocess
- # note that values must be seperated by space if channel scale value is used
- scale_value: 0.003921568627451
-
- # 模型量化相关参数
- # -----------------------------
- # model calibration parameters
- calibration_parameters:
-
- # 模型量化的参考图像的存放目录,图片格式支持Jpeg、Bmp等格式,输入的图片
- # 应该是使用的典型场景,一般是从测试集中选择20~100张图片,另外输入
- # 的图片要覆盖典型场景,不要是偏僻场景,如过曝光、饱和、模糊、纯黑、纯白等图片
- # 若有多个输入节点, 则应使用';'进行分隔
- # -------------------------------------------------------------------------------------------------
- # the directory where reference images of model quantization are stored
- # image formats include JPEG, BMP etc.
- # should be classic application scenarios, usually 20~100 images are picked out from test datasets
- # in addition, note that input images should cover typical scenarios
- # and try to avoid those overexposed, oversaturated, vague,
- # pure blank or pure white images
- # use ';' to seperate when there are multiple input nodes
- cal_data_dir: './pcd_rgb_f32'
-
- # 如果输入的图片文件尺寸和模型训练的尺寸不一致时,并且preprocess_on为true,
- # 则将采用默认预处理方法(skimage resize),
- # 将输入图片缩放或者裁减到指定尺寸,否则,需要用户提前把图片处理为训练时的尺寸
- # ---------------------------------------------------------------------------------
- # In case the size of input image file is different from that of in model training
- # and that preprocess_on is set to True,
- # shall the default preprocess method(skimage resize) be used
- # i.e., to resize or crop input image into specified size
- # otherwise user must keep image size as that of in training in advance
- preprocess_on: False
-
- # 模型量化的算法类型,支持kl、max,通常采用KL即可满足要求, 若为QAT导出的模型, 则应选择load
- # ----------------------------------------------------------------------------------
- # types of model quantization algorithms, usually kl will meet the need
- # available options:kl and max
- # if converted model is quanti model exported from QAT , then choose `load`
- calibration_type: 'default'
-
- # 编译器相关参数
- # ----------------------------
- # compiler related parameters
- compiler_parameters:
-
- # 编译策略,支持bandwidth和latency两种优化模式;
- # bandwidth以优化ddr的访问带宽为目标;
- # latency以优化推理时间为目标
- # -------------------------------------------------------------------------------------------
- # compilation strategy, there are 2 available optimization modes: 'bandwidth' and 'lantency'
- # the 'bandwidth' mode aims to optimize ddr access bandwidth
- # while the 'lantency' mode aims to optimize inference duration
- compile_mode: 'latency'
-
- # 设置debug为True将打开编译器的debug模式,能够输出性能仿真的相关信息,如帧率、DDR带宽占用等
- # -----------------------------------------------------------------------------------
- # the compiler's debug mode will be enabled by setting to True
- # this will dump performance simulation related information
- # such as: frame rate, DDR bandwidth usage etc.
- debug: False
-
- # 编译模型指定核数,不指定默认编译单核模型, 若编译双核模型,将下边注释打开即可
- # -------------------------------------------------------------------------------------
- # specifies number of cores to be used in model compilation
- # as default, single core is used as this value left blank
- # please delete the "# " below to enable dual-core mode when compiling dual-core model
- # core_num: 2
-
- # 优化等级可选范围为O0~O3
- # O0不做任何优化, 编译速度最快,优化程度最低,
- # O1-O3随着优化等级提高,预期编译后的模型的执行速度会更快,但是所需编译时间也会变长。
- # 推荐用O2做最快验证
- # ----------------------------------------------------------------------------------------------------------
- # optimization level ranges between O0~O3
- # O0 indicates that no optimization will be made
- # the faster the compilation, the lower optimization level will be
- # O1-O3: as optimization levels increase gradually, model execution, after compilation, shall become faster
- # while compilation will be prolonged
- # it is recommended to use O2 for fastest verification
- optimize_level: 'O3'
运行
sh 03_build.sh
转换成功后,得到几个文件:
得到模型后,可自行编写后处理代码在地平线板子验证模型:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。