当前位置:   article > 正文

分类_朴素贝叶斯_基于贝叶斯分类器的图像分割适用场景

基于贝叶斯分类器的图像分割适用场景

一、朴素贝叶斯

朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生. 朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等.

1. 概率

1)定义

概率是反映随机事件出现的可能性大小. 随机事件是指在相同条件下,可能出现也可能不出现的事件. 例如:

(1)抛一枚硬币,可能正面朝上,可能反面朝上,这是随机事件. 正/反面朝上的可能性称为概率;

(2)掷骰子,掷出的点数为随机事件. 每个点数出现的可能性称为概率;

(3)一批商品包含良品、次品,随机抽取一件,抽得良品/次品为随机事件. 经过大量反复试验,抽得次品率越来越接近于某个常数,则该常数为概率.

我们可以将随机事件记为A或B,则P(A), P(B)表示事件A或B的概率.

2)联合概率与条件概率

① 联合概率

指包含多个条件且所有条件同时成立的概率,记作 P ( A , B ) P ( A , B ) P(A,B) ,或 P ( A B ) P(AB) P(AB),或 P ( A ⋂ B ) P(A \bigcap B) P(AB)

② 条件概率

已知事件B发生的条件下,另一个事件A发生的概率称为条件概率,记为: P ( A ∣ B ) P(A|B) P(AB)

p(下雨|阴天)

③ 事件的独立性

事件A不影响事件B的发生,称这两个事件独立,记为:
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
因为A和B不相互影响,则有:
P ( A ∣ B ) = P ( A ) P(A|B) = P(A) P(AB)=P(A)
可以理解为,给定或不给定B的条件下,A的概率都一样大.

3)先验概率与后验概率

① 先验概率

先验概率也是根据以往经验和分析得到的概率,例如:在没有任何信息前提的情况下,猜测对面来的陌生人姓氏,姓李的概率最大(因为全国李姓为占比最高的姓氏),这便是先验概率.

② 后验概率

后验概率是指在接收了一定条件或信息的情况下的修正概率,例如:在知道对面的人来自“牛家村”的情况下,猜测他姓牛的概率最大,但不排除姓杨、李等等,这便是后验概率.

③ 两者的关系

事情还没有发生,求这件事情发生的可能性的大小,是先验概率(可以理解为由因求果). 事情已经发生,求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率(由果求因). 先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础.

2. 贝叶斯定理

1)定义

贝叶斯定理由英国数学家托马斯.贝叶斯 ( Thomas Bayes)提出,用来描述两个条件概率之间的关系,定理描述为:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)
其中, P ( A ) P(A) P(A) P ( B ) P(B) P(B)是A事件和B事件发生的概率. P ( A ∣ B ) P(A|B) P(AB)称为条件概率,表示B事件发生条件下,A事件发生的概率. 推导过程:
P ( A , B ) = P ( B ) P ( A ∣ B ) P ( B , A ) = P ( A ) P ( B ∣ A ) P(A,B) =P(B)P(A|B)\\ P(B,A) =P(A)P(B|A) P(A,B)=P(B)P(AB)P(B,A)=P(A)P(BA)
其中 P ( A , B ) P(A,B) P(A,B)称为联合概率,指事件B发生的概率,乘以事件A在事件B发生的条件下发生的概率. 因为 P ( A , B ) = P ( B , A ) P(A,B)=P(B,A) P(A,B)=P(B,A), 所以有:
P ( B ) P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P(B)P(A|B)=P(A)P(B|A) P(B)P(AB)=P(A)P(B

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号