当前位置:   article > 正文

【opencv】图像处理之相似变换、仿射变换、透视变换_图像相似变换

图像相似变换

■ Similarity Transform(相似变换)

Similarity Transform(相似变换) = Rotation(旋转) + Translation(平移) + Scale(放缩)

● 性质:Right angle is still right angle (保角性)

代码:

import cv2
import matplotlib.pyplot as plt
import numpy as np

img = cv2.imread('lenna.jpg', 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# print(img.shape)

# 得到相似变换的矩阵  # center:旋转中心 angle:旋转角度   scale:缩放比例
M = cv2.getRotationMatrix2D(center = (img.shape[0]/2,img.shape[1]/2),
                              angle = 30,
                              scale = 0.5) 

# 原图像按照相似矩阵进行相似变换  三个参数:原图像,相似矩阵,画布面积
img_rotate = cv2.warpAffine(img, M, (img.shape[0], img.shape[1]))

plt.figure(figsize=(8,8))
plt.subplot(1,2,1)
plt.imshow(img)
plt.subplot(1,2,2)
plt.imshow(img_rotate)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

原图和相似变换后的图像:
在这里插入图片描述

■ Affine Transform(仿射变换)

● 性质:Parallel lines are still parallel lines(不再具有保角性,具有保平行性)
● 三个非共线的点对(6 parameters)确定一个仿射变换。

代码:

import cv2
import matplotlib.pyplot as plt
import numpy as np

# 3 Src(原始) Points + 3 Dst(目标) Points
# cols:列/长  rows:行/宽

img = cv2.imread('lenna.jpg', 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# print(img.shape)

cols = img.shape[0]
rows = img.shape[1]

pt1 = np.float32([[0,0], [cols, 0], [0, rows]])
pt2 = np.float32([[cols*0.3, rows*0.3], [cols*0.8, rows*0.2], [cols*0.1, rows*0.9]])

# [[0,0], [cols, 0], [0, rows]] --> [[cols*0.3, rows*0.3], [cols*0.8, rows*0.2], [cols*0.1, rows*0.9]]
M = cv2.getAffineTransform(pt1, pt2)       # 仿射变换矩阵
dst = cv2.warpAffine(img, M, (cols, rows))

plt.figure(figsize=(8,8))
plt.subplot(1,2,1)
plt.imshow(img)
plt.subplot(1,2,2)
plt.imshow(dst)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

原图和相似变换后的图像:
在这里插入图片描述

■ Perspective Transform(透视/投影变换)

● 性质:Lines are still lines(不保角,不保平行,保直线性)
● 四个非共线的点对(8 parameters)确定一个透视变换。

代码:

import cv2
import matplotlib.pyplot as plt
import numpy as np

img = cv2.imread('lenna.jpg', 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

width = img.shape[1]
height = img.shape[0]

pts1 = np.float32([[0,0], [width,0], [0,height], [width,height]])
pts2 = np.float32([[width*0.1,height*0.1], [width*0.9, width*0.1], [height*0.2,height*0.8], [width*0.7,height*0.7]])

M_warp = cv2.getPerspectiveTransform(pts1, pts2)     # 单应性矩阵
img_warp = cv2.warpPerspective(img, M_warp, (width, height))

plt.figure(figsize=(8,8))
plt.subplot(1,2,1)
plt.imshow(img)
plt.subplot(1,2,2)
plt.imshow(img_warp)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

原图和透视变换后的图像:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/100345
推荐阅读
相关标签
  

闽ICP备14008679号