赞
踩
- from model_ori1 import resnet34 # model_ori1:your model
- import torch
- import torch.nn as nn
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- model = resnet34()
- self.resnet = model
- def forward(self, img):
- out = self.resnet(img)
- # print('out is {}'.format(out))
- return out
- model = Net().cuda()
- for name, param in model.named_parameters(): # 查看可优化的参数有哪些
- if param.requires_grad:
- print(name)
- # 冻结某个参数预训练
- from ResNeSt.resnest.torch.resnest import resnest101,resnest200,resnest269
-
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- model = resnest269(pretrained=True)
- model.fc = nn.Linear(2048,102)
- self.resnet = model
-
- def forward(self, img):
- out = self.resnet(img)
- # print('out is {}'.format(out))
- return out
-
- model = Net().cuda()
- for name, param in model.named_parameters(): # 查看可优化的参数有哪些
- if param.requires_grad:
- print(name)
- 新model == net:
- 读取旧pt,将其layer,name参数给新model中的
- model = resnet34()
- # inchannel = model.fc.in_features
- # print("fad",inchannel)
- # model.fc = nn.Linear(inchannel, 5)
- # m1,m = model.load_state_dict(torch.load("./rep2.pt"),strict= False)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。