当前位置:   article > 正文

Caffe2 - (二十二) Detectron 之数据集加载与处理函数_cls = self.json_category_id_to_contiguous_id[obj['

cls = self.json_category_id_to_contiguous_id[obj['category_id']] keyerror: -

Caffe2 - (二十二) Detectron 之数据集加载与处理函数

Detectron 是基于标准 COCO json 数据集格式进行的.

如果处理新的数据集时,强烈推荐将数据集转化为 COCO json 格式,重用先有数据代码即可.

不推荐重写新数据集格式的代码.

1. 数据集定义 - dataset_catalog.py


"""Collection of available datasets."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os


# Path to data dir
_DATA_DIR = os.path.join(os.path.dirname(__file__), 'data')

# Required dataset entry keys
IM_DIR = 'image_directory'
ANN_FN = 'annotation_file'

# Optional dataset entry keys
IM_PREFIX = 'image_prefix'
DEVKIT_DIR = 'devkit_directory'
RAW_DIR = 'raw_dir'

##
NEW_DATASETS_DIR = '/path/to/new_datasets/Images/'

# 支持的可用数据集
DATASETS = {
    'coco_newdatasets_train': {
        IM_DIR:
            NEW_DATASETS_DIR + '/Img', # 图片路径
        ANN_FN:
            NEW_DATASETS_DIR + '/Anno/coco_newdatasets_train.json', # coco json 格式的标注数据
    },
    'coco_newdatasets_val': {
        IM_DIR:
            NEW_DATASETS_DIR + '/Img',
        ANN_FN:
            NEW_DATASETS_DIR + '/Anno/coco_newdatasets_val.json',
    },
    'cityscapes_fine_instanceonly_seg_train': {
        IM_DIR:
            _DATA_DIR + '/cityscapes/images',
        ANN_FN:
            _DATA_DIR + '/cityscapes/annotations/instancesonly_gtFine_train.json',
        RAW_DIR:
            _DATA_DIR + '/cityscapes/raw'
    },
    'cityscapes_fine_instanceonly_seg_val': {
        IM_DIR:
            _DATA_DIR + '/cityscapes/images',
        # use filtered validation as there is an issue converting contours
        ANN_FN:
            _DATA_DIR + '/cityscapes/annotations/instancesonly_filtered_gtFine_val.json',
        RAW_DIR:
            _DATA_DIR + '/cityscapes/raw'
    },
    'cityscapes_fine_instanceonly_seg_test': {
        IM_DIR:
            _DATA_DIR + '/cityscapes/images',
        ANN_FN:
            _DATA_DIR + '/cityscapes/annotations/instancesonly_gtFine_test.json',
        RAW_DIR:
            _DATA_DIR + '/cityscapes/raw'
    },
    'coco_2014_train': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_train2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/instances_train2014.json'
    },
    'coco_2014_val': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/instances_val2014.json'
    },
    'coco_2014_minival': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/instances_minival2014.json'
    },
    'coco_2014_valminusminival': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/instances_valminusminival2014.json'
    },
    'coco_2015_test': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_test2015',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/image_info_test2015.json'
    },
    'coco_2015_test-dev': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_test2015',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/image_info_test-dev2015.json'
    },
    'coco_2017_test': {  # 2017 test uses 2015 test images
        IM_DIR:
            _DATA_DIR + '/coco/coco_test2015',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/image_info_test2017.json',
        IM_PREFIX:
            'COCO_test2015_'
    },
    'coco_2017_test-dev': {  # 2017 test-dev uses 2015 test images
        IM_DIR:
            _DATA_DIR + '/coco/coco_test2015',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/image_info_test-dev2017.json',
        IM_PREFIX:
            'COCO_test2015_'
    },
    'coco_stuff_train': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_train2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/coco_stuff_train.json'
    },
    'coco_stuff_val': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/coco_stuff_val.json'
    },
    'keypoints_coco_2014_train': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_train2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/person_keypoints_train2014.json'
    },
    'keypoints_coco_2014_val': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/person_keypoints_val2014.json'
    },
    'keypoints_coco_2014_minival': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/person_keypoints_minival2014.json'
    },
    'keypoints_coco_2014_valminusminival': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_val2014',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/person_keypoints_valminusminival2014.json'
    },
    'keypoints_coco_2015_test': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_test2015',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/image_info_test2015.json'
    },
    'keypoints_coco_2015_test-dev': {
        IM_DIR:
            _DATA_DIR + '/coco/coco_test2015',
        ANN_FN:
            _DATA_DIR + '/coco/annotations/image_info_test-dev2015.json'
    },
    'voc_2007_trainval': {
        IM_DIR:
            _DATA_DIR + '/VOC2007/JPEGImages',
        ANN_FN:
            _DATA_DIR + '/VOC2007/annotations/voc_2007_trainval.json',
        DEVKIT_DIR:
            _DATA_DIR + '/VOC2007/VOCdevkit2007'
    },
    'voc_2007_test': {
        IM_DIR:
            _DATA_DIR + '/VOC2007/JPEGImages',
        ANN_FN:
            _DATA_DIR + '/VOC2007/annotations/voc_2007_test.json',
        DEVKIT_DIR:
            _DATA_DIR + '/VOC2007/VOCdevkit2007'
    },
    'voc_2012_trainval': {
        IM_DIR:
            _DATA_DIR + '/VOC2012/JPEGImages',
        ANN_FN:
            _DATA_DIR + '/VOC2012/annotations/voc_2012_trainval.json',
        DEVKIT_DIR:
            _DATA_DIR + '/VOC2012/VOCdevkit2012'
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191

2. 数据加载与处理 - json_dataset.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import copy
import cPickle as pickle
import logging
import numpy as np
import os
import scipy.sparse

# Must happen before importing COCO API (which imports matplotlib)
import utils.env as envu
#envu.set_up_matplotlib() ###
# COCO API
from pycocotools import mask as COCOmask
from pycocotools.coco import COCO

from core.config import cfg
from datasets.dataset_catalog import ANN_FN
from datasets.dataset_catalog import DATASETS
from datasets.dataset_catalog import IM_DIR
from datasets.dataset_catalog import IM_PREFIX
from utils.timer import Timer
import utils.boxes as box_utils

logger = logging.getLogger(__name__)


class JsonDataset(object):
    """
    A class representing a COCO json dataset.
    """
    def __init__(self, name):
        # 数据初始化
        assert name in DATASETS.keys(), 'Unknown dataset name: {}'.format(name)
        assert os.path.exists(DATASETS[name][IM_DIR]), 'Image directory \'{}\' not found'.format(DATASETS[name][IM_DIR])
        assert os.path.exists(DATASETS[name][ANN_FN]), 'Annotation file \'{}\' not found'.format(DATASETS[name][ANN_FN])
        logger.debug('Creating: {}'.format(name))
        self.name = name
        self.image_directory = DATASETS[name][IM_DIR]
        self.image_prefix = ('' if IM_PREFIX not in DATASETS[name] else DATASETS[name][IM_PREFIX])
        self.COCO = COCO(DATASETS[name][ANN_FN])
        self.debug_timer = Timer()
        # Set up dataset classes
        category_ids = self.COCO.getCatIds()
        categories = [c['name'] for c in self.COCO.loadCats(category_ids)]
        self.category_to_id_map = dict(zip(categories, category_ids))
        self.classes = ['__background__'] + categories
        self.num_classes = len(self.classes)
        self.json_category_id_to_contiguous_id = {v: i + 1 for i, v in enumerate(self.COCO.getCatIds()) }
        self.contiguous_category_id_to_json_id = {v: k for k, v in self.json_category_id_to_contiguous_id.items() }
        self._init_keypoints() # 关键点

    def get_roidb(self, gt=False, proposal_file=None, min_proposal_size=2,
                  proposal_limit=-1, crowd_filter_thresh=0):
        """ 
        返回对应与 json 数据集的 roidb. 包括的处理:
            - 将 ground truth boxes 加入 roidb
            - 添加 proposals 文件中给定的 proposals
            - 基于最小边长度(minimum side length) 过滤 proposals
            - 基于与 crowd 区域交集过滤 proposals
        """
        assert gt is True or crowd_filter_thresh == 0,  'Crowd filter threshold must be 0 if ground-truth annotations are not included.'
        image_ids = self.COCO.getImgIds() # 图片 ids
        image_ids.sort() # 图片ids 排序
        roidb = copy.deepcopy(self.COCO.loadImgs(image_ids)) # 加载 coco json 数据集 
        for entry in roidb:
            self._prep_roidb_entry(entry) # 创建空 roidb
        if gt:
            # 加载 ground-truth object annotations
            self.debug_timer.tic()
            for entry in roidb:
                self._add_gt_annotations(entry)
            logger.debug('_add_gt_annotations took {:.3f}s'.
                         format(self.debug_timer.toc(average=False)))
        if proposal_file is not None:
            # 如果采用 proposal 文件给定 proposals时,从文件加载.
            self.debug_timer.tic()
            self._add_proposals_from_file(roidb, proposal_file, min_proposal_size, proposal_limit, crowd_filter_thresh)
            logger.debug('_add_proposals_from_file took {:.3f}s'.
                         format(self.debug_timer.toc(average=False)) )
        _add_class_assignments(roidb) # 对每个 roidb 元素相关的每个 box 计算 object 类别
        return roidb

    def _prep_roidb_entry(self, entry):
        """
        Adds empty metadata fields to an roidb entry.
        """
        # Reference back to the parent dataset
        entry['dataset'] = self
        # 图片绝对路径
        entry['image'] = os.path.join(self.image_directory, 
                                      self.image_prefix + entry['file_name'])
        entry['flipped'] = False # 原始数据未水平翻转
        entry['has_visible_keypoints'] = False 
        entry['boxes'] = np.empty((0, 4), dtype=np.float32)
        entry['segms'] = []
        entry['gt_classes'] = np.empty((0), dtype=np.int32)
        entry['seg_areas'] = np.empty((0), dtype=np.float32)
        entry['gt_overlaps'] = scipy.sparse.csr_matrix(
            np.empty((0, self.num_classes), dtype=np.float32) )
        entry['is_crowd'] = np.empty((0), dtype=np.bool)
        # 'box_to_gt_ind_map': 大小尺寸为 (#rois). 将每个 roi 映射到 rois 列表中的索引,其满足 np.where(entry['gt_classes'] > 0)
        entry['box_to_gt_ind_map'] = np.empty((0), dtype=np.int32)
        if self.keypoints is not None:
            entry['gt_keypoints'] = np.empty((0, 3, self.num_keypoints), dtype=np.int32 )
        # 移除不相关的标注信息
        for k in ['date_captured', 'url', 'license', 'file_name']:
            if k in entry:
                del entry[k]

    def _add_gt_annotations(self, entry):
        """
        添加 groundtruth 标注数据到一个 roidb entry.
        """
        ann_ids = self.COCO.getAnnIds(imgIds=entry['id'], iscrowd=None)
        objs = self.COCO.loadAnns(ann_ids) # 加载标注数据
        # 净化 bboxes,移除无效的 bboxes
        valid_objs = []
        valid_segms = []
        width = entry['width']
        height = entry['height']
        for obj in objs:
            # crowd regions are RLE encoded and stored as dicts
            if isinstance(obj['segmentation'], list):
                # Valid polygons have >= 3 points, so require >= 6 coordinates
                obj['segmentation'] = [p for p in obj['segmentation'] if len(p) >= 6 ]
            if obj['area'] < cfg.TRAIN.GT_MIN_AREA: # 面积小的 object 丢弃
                continue
            if 'ignore' in obj and obj['ignore'] == 1: 
                continue
            # 将 bbox 标注形式由 (x1, y1, w, h) 转化为 (x1, y1, x2, y2)
            x1, y1, x2, y2 = box_utils.xywh_to_xyxy(obj['bbox'])
            x1, y1, x2, y2 = box_utils.clip_xyxy_to_image(x1, y1, x2, y2, height, width )
            # 确保标注 bboxes 正常,分割 seg 面积大于 0. 
            if obj['area'] > 0 and x2 > x1 and y2 > y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objs.append(obj)
                valid_segms.append(obj['segmentation'])
        num_valid_objs = len(valid_objs) 

        boxes = np.zeros((num_valid_objs, 4), dtype=entry['boxes'].dtype)
        gt_classes = np.zeros((num_valid_objs), dtype=entry['gt_classes'].dtype)
        gt_overlaps = np.zeros((num_valid_objs, self.num_classes),
                               dtype=entry['gt_overlaps'].dtype )
        seg_areas = np.zeros((num_valid_objs), dtype=entry['seg_areas'].dtype)
        is_crowd = np.zeros((num_valid_objs), dtype=entry['is_crowd'].dtype)
        box_to_gt_ind_map = np.zeros((num_valid_objs), dtype=entry['box_to_gt_ind_map'].dtype )
        if self.keypoints is not None:
            gt_keypoints = np.zeros((num_valid_objs, 3, self.num_keypoints),
                                    dtype=entry['gt_keypoints'].dtype )

        im_has_visible_keypoints = False
        for ix, obj in enumerate(valid_objs):
            cls = self.json_category_id_to_contiguous_id[obj['category_id']]
            boxes[ix, :] = obj['clean_bbox']
            gt_classes[ix] = cls
            seg_areas[ix] = obj['area']
            is_crowd[ix] = obj['iscrowd']
            box_to_gt_ind_map[ix] = ix
            if self.keypoints is not None:
                gt_keypoints[ix, :, :] = self._get_gt_keypoints(obj)
                if np.sum(gt_keypoints[ix, 2, :]) > 0:
                    im_has_visible_keypoints = True
            if obj['iscrowd']:
                # Set overlap to -1 for all classes for crowd objects
                # so they will be excluded during training
                gt_overlaps[ix, :] = -1.0
            else:
                gt_overlaps[ix, cls] = 1.0
        entry['boxes'] = np.append(entry['boxes'], boxes, axis=0)
        entry['segms'].extend(valid_segms)
        # To match the original implementation:
        # entry['boxes'] = np.append(
        #     entry['boxes'], boxes.astype(np.int).astype(np.float), axis=0)
        entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes)
        entry['seg_areas'] = np.append(entry['seg_areas'], seg_areas)
        entry['gt_overlaps'] = np.append(entry['gt_overlaps'].toarray(), gt_overlaps, axis=0 )
        entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps'])
        entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd)
        entry['box_to_gt_ind_map'] = np.append(entry['box_to_gt_ind_map'], box_to_gt_ind_map )
        if self.keypoints is not None:
            entry['gt_keypoints'] = np.append(entry['gt_keypoints'], gt_keypoints, axis=0 )
            entry['has_visible_keypoints'] = im_has_visible_keypoints

    def _add_proposals_from_file(self, roidb, proposal_file, min_proposal_size, top_k, crowd_thresh):
        """
        从 proposal 文件加载 proposals 到 roidb.
        """
        logger.info('Loading proposals from: {}'.format(proposal_file))
        with open(proposal_file, 'r') as f:
            proposals = pickle.load(f)
        id_field = 'indexes' if 'indexes' in proposals else 'ids'  # compat fix
        _sort_proposals(proposals, id_field) # 根据 id_field 排序 proposals
        box_list = []
        for i, entry in enumerate(roidb):
            if i % 2500 == 0:
                logger.info(' {:d}/{:d}'.format(i + 1, len(roidb)))
            boxes = proposals['boxes'][i]
            # 确保 proposals bboxes 与对应的图片id 相对应.
            assert entry['id'] == proposals[id_field][i]
            # 去除重复 boxes 和非常小的 boxes,并取 top k.
            boxes = box_utils.clip_boxes_to_image(boxes, entry['height'], entry['width'])
            keep = box_utils.unique_boxes(boxes)
            boxes = boxes[keep, :]
            keep = box_utils.filter_small_boxes(boxes, min_proposal_size)
            boxes = boxes[keep, :]
            if top_k > 0:
                boxes = boxes[:top_k, :]
            box_list.append(boxes)
        _merge_proposal_boxes_into_roidb(roidb, box_list)
        if crowd_thresh > 0:
            _filter_crowd_proposals(roidb, crowd_thresh)

    def _init_keypoints(self):
        """
        初始化 COCO keypoint 标注数据.
        """
        self.keypoints = None
        self.keypoint_flip_map = None
        self.keypoints_to_id_map = None
        self.num_keypoints = 0
        # Thus far only the 'person' category has keypoints
        if 'person' in self.category_to_id_map:
            cat_info = self.COCO.loadCats([self.category_to_id_map['person']])
        else:
            return

        # Check if the annotations contain keypoint data or not
        if 'keypoints' in cat_info[0]:
            keypoints = cat_info[0]['keypoints']
            self.keypoints_to_id_map = dict(
                zip(keypoints, range(len(keypoints))))
            self.keypoints = keypoints
            self.num_keypoints = len(keypoints)
            self.keypoint_flip_map = {
                'left_eye': 'right_eye',
                'left_ear': 'right_ear',
                'left_shoulder': 'right_shoulder',
                'left_elbow': 'right_elbow',
                'left_wrist': 'right_wrist',
                'left_hip': 'right_hip',
                'left_knee': 'right_knee',
                'left_ankle': 'right_ankle'}

    def _get_gt_keypoints(self, obj):
        """
        返回 groudntruth keypoints.
        """
        if 'keypoints' not in obj:
            return None
        kp = np.array(obj['keypoints'])
        x = kp[0::3]  # 0-indexed x coordinates
        y = kp[1::3]  # 0-indexed y coordinates
        # 0: not labeled; 1: labeled, not inside mask;
        # 2: labeled and inside mask
        v = kp[2::3]
        num_keypoints = len(obj['keypoints']) / 3
        assert num_keypoints == self.num_keypoints
        gt_kps = np.ones((3, self.num_keypoints), dtype=np.int32)
        for i in range(self.num_keypoints):
            gt_kps[0, i] = x[i]
            gt_kps[1, i] = y[i]
            gt_kps[2, i] = v[i]
        return gt_kps


def add_proposals(roidb, rois, scales, crowd_thresh):
    """ 
    将只有 groundtruth 标注但没有 proposals 的 proposal boxes(rois) 添加到 roidb.
    如果 proposals 不是原始的图片尺度scale,则指定对应的 scale factor - inv_im_scale.
    """
    box_list = []
    for i in range(len(roidb)):
        inv_im_scale = 1. / scales[i]
        idx = np.where(rois[:, 0] == i)[0]
        box_list.append(rois[idx, 1:] * inv_im_scale)
    _merge_proposal_boxes_into_roidb(roidb, box_list)
    if crowd_thresh > 0:
        _filter_crowd_proposals(roidb, crowd_thresh)
    _add_class_assignments(roidb)


def _merge_proposal_boxes_into_roidb(roidb, box_list):
    """
    将 proposal boxes 添加到每个 roidb entry.
    """
    assert len(box_list) == len(roidb)
    for i, entry in enumerate(roidb):
        boxes = box_list[i]
        num_boxes = boxes.shape[0]
        gt_overlaps = np.zeros((num_boxes, entry['gt_overlaps'].shape[1]),
                               dtype=entry['gt_overlaps'].dtype )
        box_to_gt_ind_map = -np.ones((num_boxes), dtype=entry['box_to_gt_ind_map'].dtype )

        # Note: 这里将所有的 gt rois 都添加到 roidb entry,即使被标注为 crowd 的.
        # 与 crowds 重叠的 boxes 后面采用 _filter_crowd_proposals 进行过滤.
        gt_inds = np.where(entry['gt_classes'] > 0)[0]
        if len(gt_inds) > 0:
            gt_boxes = entry['boxes'][gt_inds, :]
            gt_classes = entry['gt_classes'][gt_inds]
            proposal_to_gt_overlaps = box_utils.bbox_overlaps(
                boxes.astype(dtype=np.float32, copy=False),
                gt_boxes.astype(dtype=np.float32, copy=False) )
            # Gt box that overlaps each input box the most
            # (ties are broken arbitrarily by class order)
            argmaxes = proposal_to_gt_overlaps.argmax(axis=1)
            # Amount of that overlap
            maxes = proposal_to_gt_overlaps.max(axis=1)
            # Those boxes with non-zero overlap with gt boxes
            I = np.where(maxes > 0)[0]
            # Record max overlaps with the class of the appropriate gt box
            gt_overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
            box_to_gt_ind_map[I] = gt_inds[argmaxes[I]]
        entry['boxes'] = np.append(entry['boxes'], boxes.astype(entry['boxes'].dtype, copy=False), axis=0 )
        entry['gt_classes'] = np.append(entry['gt_classes'], np.zeros((num_boxes), dtype=entry['gt_classes'].dtype) )
        entry['seg_areas'] = np.append(entry['seg_areas'], np.zeros((num_boxes), dtype=entry['seg_areas'].dtype) )
        entry['gt_overlaps'] = np.append(entry['gt_overlaps'].toarray(), gt_overlaps, axis=0 )
        entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps'])
        entry['is_crowd'] = np.append(entry['is_crowd'], np.zeros((num_boxes), dtype=entry['is_crowd'].dtype) )
        entry['box_to_gt_ind_map'] = np.append(entry['box_to_gt_ind_map'], box_to_gt_ind_map.astype(entry['box_to_gt_ind_map'].dtype, copy=False ) )


def _filter_crowd_proposals(roidb, crowd_thresh):
    """ 
    寻找在 crowd 区域的 proposals,并标记为 overlap = -1,表示在训练时会被忽略掉.
    """
    for entry in roidb:
        gt_overlaps = entry['gt_overlaps'].toarray()
        crowd_inds = np.where(entry['is_crowd'] == 1)[0]
        non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
        if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
            continue
        crowd_boxes = box_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
        non_gt_boxes = box_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
        iscrowd_flags = [int(True)] * len(crowd_inds)
        ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd_flags)
        bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
        gt_overlaps[non_gt_inds[bad_inds], :] = -1
        entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps)


def _add_class_assignments(roidb):
    """
    计算与每个 roidb entry 相关的每个 box 的 object 类别.
    """
    for entry in roidb:
        gt_overlaps = entry['gt_overlaps'].toarray()
        # max overlap with gt over classes (columns)
        max_overlaps = gt_overlaps.max(axis=1)
        # gt class that had the max overlap
        max_classes = gt_overlaps.argmax(axis=1)
        entry['max_classes'] = max_classes
        entry['max_overlaps'] = max_overlaps
        # 合理性检查
        # 如果 max overlap 是 0,则对应的 class 必须是 background (classid = 0)
        zero_inds = np.where(max_overlaps == 0)[0]
        assert all(max_classes[zero_inds] == 0)
        # 如果 max overlap > 0, 则对应的 class 必须是某个 fg class (not class 0)
        nonzero_inds = np.where(max_overlaps > 0)[0]
        assert all(max_classes[nonzero_inds] != 0)


def _sort_proposals(proposals, id_field):
    """
    根据指定的 id_field 将proposals 排序.
    """
    order = np.argsort(proposals[id_field])
    fields_to_sort = ['boxes', id_field, 'scores']
    for k in fields_to_sort:
        proposals[k] = [proposals[k][i] for i in order]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/116587
推荐阅读
相关标签
  

闽ICP备14008679号