赞
踩
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI,
点击star加星不要吝啬,星越多笔者越努力。
在梯度下降法中,我们简单讲述了一下神经网络做线性拟合的原理,即:
一个不恰当的比喻就是穿糖葫芦:桌子上放了一溜儿12个红果,给你一个足够长的竹签子,选定一个角度,在不移动红果的前提下,想办法用竹签子穿起最多的红果。
最开始你可能会任意选一个方向,用竹签子比划一下,数数能穿到几个红果,发现是5个;然后调整一下竹签子在桌面上的水平角度,发现能穿到6个......最终你找到了能穿10个红果的的角度。
我们是首次尝试建立神经网络,先用一个最简单的单层单点神经元,如图4-4所示。
图4-4 单层单点神经元
下面,我们用这个最简单的线性回归的例子,来说明神经网络中最重要的反向传播和梯度下降的概念、过程以及代码实现。
此神经元在输入层只接受一个输入特征,经过参数w,b的计算后,直接输出结果。这样一个简单的“网络”,只能解决简单的一元线性回归问题,而且由于是线性的,我们不需要定义激活函数,这就大大简化了程序,而且便于大家循序渐进地理解各种知识点。
严格来说输入层在神经网络中并不能称为一个层。
因为是一元线性问题,所以w/b都是一个标量。
输出层1个神经元,线性预测公式是:
z是模型的预测输出,y是实际的样本标签值,下标
因为是线性回归问题,所以损失函数使用均方差函数
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。