当前位置:   article > 正文

深度学习入门实战_深度学习实战

深度学习实战

1.DNN
1.1.DNN结构和数据说明
在这里插入图片描述
在这里插入图片描述
1.2 DNN代码实现

# -*- coding: utf-8 -*-
"""
Created on Tue May 28 19:22:44 2019

@author: lcl
"""

from __future__ import print_function

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

import tensorflow as tf

# Parameters
learning_rate = 0.1
num_steps = 500
batch_size = 128
display_step = 100

# Network Parameters
n_hidden_1 = 256 # 1st layer number of neurons
n_hidden_2 = 256 # 2nd layer number of neurons
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)

# tf Graph input
X = tf.placeholder("float", [None, num_input])
Y = tf.placeholder("float", [None, num_classes])

# Store layers weight & bias
weights = {
    'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'out': tf.Variable(tf.random_normal([num_classes]))
}

# Create model
def neural_net(x):
    # Hidden fully connected layer with 256 neurons
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    # Hidden fully connected layer with 256 neurons
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    # Output fully connected layer with a neuron for each class
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    return out_layer

logits = neural_net(X)
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels = Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)

correct_pred = tf.equal(tf.argmax(logits,1),tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for step in range(1,num_steps + 1):
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
        if step % display_step == 0 or step == 1:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
                                                                 Y: batch_y})
            print("Step " + str(step) + ", Minibatch Loss= " + \
                  "{:.4f}".format(loss) + ", Training Accuracy= " + \
                  "{:.3f}".format(acc))
            
    print("Optimization Finished!")

    # Calculate accuracy for MNIST test images
    print("Testing Accuracy:", \
         sess.run(accuracy, feed_dict={X: mnist.test.images,
                                      Y: mnist.test.labels}))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82

1.3运行结果
在这里插入图片描述
1.4 相关函数说明
在这里插入图片描述
2.CNN
2.1 CNN结构
在这里插入图片描述
2.2 CNN代码实现

# -*- coding: utf-8 -*-
"""
Created on Wed May 29 14:31:38 2019

@author: lcl
"""

from __future__ import division, print_function, absolute_import

import tensorflow as tf

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

#training parameters
learning_rate = 0.001
num_steps = 100
batch_size = 128
display_step = 10

#Network parameters
num_input = 784
num_classes = 10
dropout = 0.75

#tf graph input
X = tf.placeholder(tf.float32,[None,num_input])
Y = tf.placeholder(tf.float32,[None,num_classes])
keep_prob = tf.placeholder(tf.float32)

def conv2d(x,W,b,strides = 1):
    x = tf.nn.conv2d(x,W,strides = [1,strides,strides,1],padding = 'SAME')
    x = tf.nn.bias_add(x,b)
    return tf.nn.relu(x)

def maxpool2d(x,k=2):
    return tf.nn.max_pool(x,ksize = [1,k,k,1],strides = [1,k,k,1],padding = 'SAME')

def conv_net(x,weights,biases,dropout):
    x = tf.reshape(x,shape = [-1,28,28,1])
    
    conv1 = conv2d(x,weights['wc1'],biases['bc1'])
    conv1 = maxpool2d(conv1,k = 2)
    
    conv2 = conv2d(conv1,weights['wc2'],biases['bc2'])
    conv2 = maxpool2d(conv2,k = 2)
    
    fc1 = tf.reshape(conv2,[-1,weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1,weights['wd1']),biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    fc1 = tf.nn.dropout(fc1,dropout)
    
    out = tf.add(tf.matmul(fc1,weights['out']),biases['out'])
    return out


weights = {
        'wc1':tf.Variable(tf.random_normal([5,5,1,32])),
        'wc2':tf.Variable(tf.random_normal([5,5,32,64])),
        'wd1':tf.Variable(tf.random_normal([7*7*64,1024])),
        'out':tf.Variable(tf.random_normal([1024,num_classes]))
        }

biases = {
        'bc1':tf.Variable(tf.random_normal([32])),
        'bc2':tf.Variable(tf.random_normal([64])),
        'bd1':tf.Variable(tf.random_normal([1024])),
        'out':tf.Variable(tf.random_normal([num_classes]))
        }

logits = conv_net(X,weights,biases,keep_prob)
prediction = tf.nn.softmax(logits)

loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels = Y))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate)
train_op = optimizer.minimize(loss_op)

correct_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    
    for step in range(1,num_steps+1):
        batch_x,batch_y = mnist.train.next_batch(batch_size)
        sess.run(train_op,feed_dict = {X:batch_x,Y:batch_y,keep_prob:dropout})
        if step % display_step == 0 or step == 1:
            loss,acc = sess.run([loss_op,accuracy],feed_dict = {X:batch_x,Y:batch_y,keep_prob:1.0})
            print("Step " + str(step) + ", Minibatch Loss= " + \
                  "{:.4f}".format(loss) + ", Training Accuracy= " + \
                  "{:.3f}".format(acc))

    print("Optimization Finished!")  
    
    # Calculate accuracy for 256 MNIST test images
    print("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={X: mnist.test.images[:256],
                                      Y: mnist.test.labels[:256],
                                      keep_prob: 1.0}))
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103

2.3 运行结果
在这里插入图片描述
2.4 参数说明
2828(原始图片大小) ---- 3030(padding)---- 2626(卷积)----- 2828(padding)----1414(pooling)----- 1616(padding) ----- 1212(卷积) ----- 1414(padding) ----- 7*7(pooling)
3 RNN
3.1 RNN结构
在这里插入图片描述
3.2 RNN实现代码

# -*- coding: utf-8 -*-
"""
Created on Wed May 29 16:05:54 2019

@author: admin
"""

from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import rnn

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

tf.reset_default_graph()

#training parameters
learning_rate = 0.001
training_steps = 500
batch_size = 128
display_step = 20

#network parameters
num_input = 28
timesteps = 28
num_hidden = 128
num_classes = 10

#tf graph input
X = tf.placeholder("float",[None,timesteps,num_input])
Y = tf.placeholder("float",[None,num_classes])


#define weights
weights = {
        'out':tf.Variable(tf.random_normal([num_hidden,num_classes]))
        }

biases = {
        'out':tf.Variable(tf.random_normal([num_classes]))
        }

def RNN(x,weights,biases):
    x = tf.unstack(x,timesteps,1)
    
    lstm_cell = rnn.BasicLSTMCell(num_hidden,forget_bias = 1.0)
    
    #outputs,states = rnn.static_rnn(lstm_cell,x,dtype = tf.float32)
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
    
    return tf.matmul(outputs[-1],weights['out'] + biases['out'])

logits = RNN(X,weights,biases)
prediction = tf.nn.softmax(logits)

loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels = Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate)
train_op = optimizer.minimize(loss_op)

correct_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for step in range(1,training_steps + 1):
        batch_x,batch_y = mnist.train.next_batch(batch_size)
        batch_x = batch_x.reshape(batch_size,timesteps,num_input)
        sess.run(train_op,feed_dict = {X:batch_x,Y:batch_y})
        if step % display_step == 0 or step == 1:
            loss,acc = sess.run([loss_op,accuracy],feed_dict = {X:batch_x,Y:batch_y})
            print("Step " + str(step) + ", Minibatch Loss= " + \
                  "{:.4f}".format(loss) + ", Training Accuracy= " + \
                  "{:.3f}".format(acc))
            
    print("Optimization Finished!")
    
    # Calculate accuracy for 128 mnist test images
    test_len = 128
    test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
    test_label = mnist.test.labels[:test_len]
    print("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

3.3 输出结果
在这里插入图片描述
3.4参数说明
xi为28*28矩阵的第i列,RNN中每次输入矩阵中的一列,共输入28次

4.参考
https://github.com/aymericdamien/TensorFlow-Examples

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/133638
推荐阅读
相关标签
  

闽ICP备14008679号