当前位置:   article > 正文

ResNet相关预训练模型下载地址_resnet50预训练模型下载

resnet50预训练模型下载
  1. model_urls = {
  2. 'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth',
  3. 'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth',
  4. 'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth',
  5. 'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth',
  6. 'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth',
  7. 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
  8. 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
  9. 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
  10. 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
  11. }

两种载入的方法:

  1. # methold1
  2. # model = torchvision.models.resnet152(pretrained=True)
  3. # methold2
  4. model=torchvision.models.resnet152()
  5. model.load_state_dict(torch.load('./resnet152-394f9c45.pth'))

[1] 参考pytorch,​ ​torchvision.modules.resnet​​

GitHub - Cadene/pretrained-models.pytorch: Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/151686
推荐阅读
相关标签
  

闽ICP备14008679号