赞
踩
目录
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接
口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在
并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的
线程,必须包含< thread >头文件。
函数名 | 功能 |
thread() | 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程 |
thread(fn,args1, args2,...) | 构造一个线程对象,并关联线程函数fn,args1,args2,...为线程函数的 参数 |
get_id() | 获取线程id |
jionable() | 线程是否还在执行,joinable代表的是一个正在执行中的线程。 |
jion() | 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 |
detach() | 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离 的线程变为后台线程,创建的线程的"死活"就与主线程无关 |
注意:
1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的
状态。
2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
- #include <thread>
- int main()
- {
- std::thread t1;
- cout << t1.get_id() << endl;
- return 0;
- }
get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中
包含了一个结构体:
- // vs下查看
- typedef struct
- { /* thread identifier for Win32 */
- void *_Hnd; /* Win32 HANDLE */
- unsigned int _Id;
- } _Thrd_imp_t;
3. 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。
线程函数一般情况下可按照以下三种方式提供:
函数指针
lambda表达式
函数对象
- #include <iostream>
- using namespace std;
- #include <thread>
- void ThreadFunc(int a)
- {
- cout << "Thread1" << a << endl;
- }
- class TF
- {
- public:
- void operator()()
- {
- cout << "Thread3" << endl;
- }
- };
- int main()
- {
- // 线程函数为函数指针
- thread t1(ThreadFunc, 10);
-
- // 线程函数为lambda表达式
- thread t2([] {cout << "Thread2" << endl; });
-
- // 线程函数为函数对象
- TF tf;
- thread t3(tf);
-
- t1.join();
- t2.join();
- t3.join();
- cout << "Main thread!" << endl;
- return 0;
- }
4. thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个
线程对象关联线程的状态转移给其他线程对象。
5. 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效
采用无参构造函数构造的线程对象
线程对象的状态已经转移给其他线程对象
线程已经调用jion或者detach结束
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在
线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。
- #include<iostream>
- #include<thread>
- using namespace std;
- void ThreadFunc1(int& x)
- {
- x += 10;
- }
- void ThreadFunc2(int* x)
- {
- *x += 10;
- }
- int main()
- {
- int a = 10;
- // 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式
- // 但其实际引用的是线程栈中的拷贝
- //thread t1(ThreadFunc1, a);//这里会报错,无法将int类型的值转换为int&类型的引用
- //t1.join();
- //cout << a << endl;
-
- // 如果想要通过形参改变外部实参时,必须借助std::ref()函数
- thread t2(ThreadFunc1, std::ref(a));
- t2.join();
- cout << a << endl;
-
- 地址的拷贝
- thread t3(ThreadFunc2, &a);
- t3.join();
- cout << a << endl;
- return 0;
- }
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问
题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数
据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:
- #include <iostream>
- #include <thread>
- using namespace std;
- int main()
- {
- int n = 100000;
- int val = 0;
- thread t1([&] {
- for (size_t i = 0; i < n; i++)
- {
- val++;
- }
- });
- thread t2([&] {
- for (size_t i = 0; i < n; i++)
- {
- val++;
- }
- });
- t1.join();
- t2.join();
- cout << val << endl;
- return 0;
- }
运行截图:
运行结果是未预测的,可能会出现数据不一致的问题
C++98中传统的解决方式:可以对共享修改的数据可以加锁保护。
- #include<iostream>
- #include<thread>
- #include<mutex>
- using namespace std;
- int main()
- {
- int n = 100000;
- int val = 0;
- mutex mut;
- thread t1([&] {
- for (size_t i = 0; i < n; i++)
- {
- mut.lock();
- val++;
- mut.unlock();
- }
- });
- thread t2([&] {
- for (size_t i = 0; i < n; i++)
- {
- mut.lock();
- val++;
- mut.unlock();
- }
- });
- t1.join();
- t2.join();
- cout << val << endl;
- return 0;
- }
运行截图:
虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻
塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。
因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入
的原子操作类型,使得线程间数据的同步变得非常高效。
- #include <iostream>
- #include <thread>
- #include <atomic>
- using namespace std;
- int main()
- {
- int n = 100000;
- atomic<int> val = 0;
- thread t1([&] {
- for (size_t i = 0; i < n; i++)
- {
- val++;
- }
- });
- thread t2([&] {
- for (size_t i = 0; i < n; i++)
- {
- val++;
- }
- });
- t1.join();
- t2.join();
- cout << val << endl;
- return 0;
- }
运行截图:
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的
访问。
更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。
atmoic<T> t; // 声明一个类型为T的原子类型变量t
注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11
中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及
operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算
符重载默认删除掉了。
- #include <atomic>
- int main()
- {
- atomic<int> a1(0);
- //atomic<int> a2(a1); // 编译失败
- atomic<int> a2(0);
- //a2 = a1; // 编译失败
- return 0;
- }
在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高
效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能
通过锁的方式来进行控制。
比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之
后,输出number的结果,要求:number最后的值为0。
- int number = 0;
- mutex g_lock;
- int ThreadProc1()
- {
- for (int i = 0; i < 100; i++)
- {
- g_lock.lock();
- ++number;
- cout << "thread 1 :" << number << endl;
- g_lock.unlock();
- }
- return 0;
- }
- int ThreadProc2()
- {
- for (int i = 0; i < 100; i++)
- {
- g_lock.lock();
- --number;
- cout << "thread 2 :" << number << endl;
- g_lock.unlock();
- }
- return 0;
- }
- int main()
- {
- thread t1(ThreadProc1);
- thread t2(ThreadProc2);
- t1.join();
- t2.join();
- cout << "number:" << number << endl;
- return 0;
- }
上述代码的缺陷:锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁
的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。
在C++11中,Mutex总共包了四个互斥量的种类:
函数名 函数功能
1. std::mutex
C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用
的三个函数:
函数名 | 函数功能 |
lock() | 上锁:锁住互斥量 |
unlock() | 解锁:释放对互斥量的所有权 |
try_lock() | 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞 |
注意:
线程函数调用lock()时,可能会发生以下三种情况:
如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,
该线程一直拥有该锁
如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
线程函数调用try_lock()时,可能会发生以下三种情况:
如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock
释放互斥量
如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
2. std::recursive_mutex
其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。
3. std::timed_mutex
比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until() 。
try_lock_for()
接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
try_lock_until()
接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
4. std::recursive_timed_mutex
std::lock_gurad 是 C++11 中定义的模板类。定义如下:
- template<class _Mutex>
- class lock_guard
- {
- public:
- // 在构造lock_gard时,_Mtx还没有被上锁
- explicit lock_guard(_Mutex& _Mtx)
- : _MyMutex(_Mtx)
- {
- _MyMutex.lock();
- }
- // 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
- lock_guard(_Mutex& _Mtx, adopt_lock_t)
- : _MyMutex(_Mtx)
- {}
- ~lock_guard() noexcept
- {
- _MyMutex.unlock();
- }
- lock_guard(const lock_guard&) = delete;
- lock_guard& operator=(const lock_guard&) = delete;
- private:
- _Mutex& _MyMutex;
- };
通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封
装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数
成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁
问题。
lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。
与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动
(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题。
与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有
权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相
同)、mutex(返回当前unique_lock所管理的互斥量的指针)。
condition_variable条件变量,用来进行线程之间的互相通知。
例:线程1打印奇数,线程2打印偶数
实现思路1:
- int main()
- {
- int i = 0;
- int n = 100;
- mutex mut;
- int flag = true;
- //打印奇数
- thread t1([&] {
- while (i < n)
- {
- unique_lock<mutex> lock(mut);
- if (i % 2)
- {
- cout << "t1: " << this_thread::get_id() << ": " << i << endl;
- i++;
- }
- }
- });
- //打印偶数
- thread t2([&] {
- while (i <= n)
- {
- unique_lock<mutex> lock(mut);
- if (i % 2 == 0)
- {
- cout << "t2: " << this_thread::get_id() << ": " << i << endl;
- i++;
- }
- }
- });
- t1.join();
- t2.join();
- return 0;
- }
存在的问题:可能会存在一个线程一直占用CPU资源
改进后的代码:
实现思路2:通过加入条件变量的方式,当某个线程满足条件执行完之后唤醒另一个线程执行
- #include<iostream>
- #include<thread>
- #include<mutex>
- #include<condition_variable>
- using namespace std;
- int main()
- {
- int i = 0;
- int n = 100;
- mutex mut;
- int flag = true;
- condition_variable cv;
- //打印奇数
- thread t1([&] {
- while (i < n)
- {
- unique_lock<mutex> lock(mut);
- while (flag == true)
- cv.wait(lock); //通过条件变量的方式让该线程阻塞
- cout << "t1: " << this_thread::get_id() << ": " << i << endl;
- i++;
- flag = true;
- cv.notify_one();//唤醒另外一个线程
- }
- });
- //打印偶数
- thread t2([&] {
- while (i <= n)
- {
- unique_lock<mutex> lock(mut);
- while (flag == false)
- cv.wait(lock);
- cout << "t2: " << this_thread::get_id() << ": " << i << endl;
- i++;
- flag = false;
- cv.notify_one();
- }
- });
- t1.join();
- t2.join();
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。