赞
踩
最近有空,把之前的项目梳理记录一下,惠已惠人。我的demo代码
人脸模型是在 pytorch 下训练的,工程文件用的是这个:MobileFaceNet_Tutorial_Pytorch
训练完成之后,先转为onnx模型并做简化,代码如下:
def export_onnx(): import onnx parser = argparse.ArgumentParser() #parser.add_argument('--weights', type=str, default=r'F:\demo\Pytorch_demo\yolov5_fruit\weights\fruit_last.pt', help='weights path') parser.add_argument('--img-size', nargs='+', type=int, default=[112, 112], help='image size') parser.add_argument('--batch-size', type=int, default=1, help='batch size') opt = parser.parse_args() print(opt) # Parameters f = "zeng_mobileface_model\zeng_insightface.onnx" sim_onnx_path = "zeng_mobileface_model\zeng_insightface_sim.onnx" img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection # Load pytorch model #google_utils.attempt_download(opt.weights) #model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() #model.eval() device = "cpu" model = MobileFaceNet(512).to(device) # embeding size is 512 (feature vector) model.load_state_dict( torch.load('F:\demo\Pytorch_demo\MobileFaceNet_Tutorial_Pytorch\zeng_mobileface_model\Iter_455000_model.ckpt', map_location='cpu')['net_state_dict']) print('MobileFaceNet face detection model generated') model.eval() _ = model(img) # dry run torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'], output_names=['output']) # output_names=['classes', 'boxes'] # Check onnx model model = onnx.load(f) # load onnx model onnx.checker.check_model(model) # check onnx model print(onnx.helper.printable_graph(model.graph)) # print a hum
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。