当前位置:   article > 正文

【Matlab】基于指标的多目标优化算法之ISDE+_isde算法

isde算法

进化算法,或称“演化算法” (evolutionary algorithms, EAS) 是一个“算法簇”,尽管它有很多的变化,有不同的遗传基因表达方式,不同的交叉和变异算子,特殊算子的引用,以及不同的再生和选择方法,但它们产生的灵感都来自于大自然的生物进化。与传统的基于微积分的方法和穷举法等优化算法相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织、自适应、自学习的特性,能够不受问题性质的限制,有效地处理传统优化算法难以解决的复杂问题。

最近看了一篇进化计算的论文:
ISDE+ - An Indicator for Multi and Many-objective Optimization:地址

1. 源码下载与介绍

代码可以在上述链接的最后下载,这里讲解一下代码的具体含义。

在这里插入图片描述

下载并解压后可以看到两个子文件夹,相信熟悉进化计算的同学应该知道DTLZ和WFG的含义。
在这里插入图片描述
没错,它们是进化算法中常用的两组测试函数。拿DTLZ为例,可以看到,其中的内容如下:
在这里插入图片描述
共有7个matlab文件,和一个空的文件夹。

2.详细细节

2.1 主要流程

算法的主要流程见下面的伪代码:
在这里插入图片描述

DTLZ7主要包含7个测试问题,即DTLZ1-DTLZ7,Main.m文件中首先对该问题进行一些参数设置,然后对算法进行一些参数配置,如设置种群的规模、评价次数等,具体的逻辑部分的讲解放在代码的注释中,大家可以详细看一下代码:

for Problem = 1:7
    %-----------------------------------------------------------------------------------------
	% DTLZ问题参数设置
	
    % M代表目标函数的个数
    for M = 4:2:10         
        if Problem == 1 % DTLZ1            
            K = 5;  % the parameter in DTLZ1            
        elseif Problem == 2 || 3 || 4            
            K = 10;  % the parameter in DTLZ2, DTLZ3, DTLZ4,            
        elseif Problem == 5 || 6            
            K = 10;  % the parameter in DTLZ5, DTLZ6            
        elseif Problem == 7 % DTLZ7            
            K = 20;  % the parameter in DTLZ7 
            fmax   = repmat(max(PopObj,[],1),N,1);
            fmin   = repmat(min(PopObj,[],1),N,1);            
        end
        
        D = M + K - 1;
        MinValue   = zeros(1,D);
        MaxValue   = ones(1,D);
        
        %-----------------------------------------------------------------------------------------
        % 算法参数设置
        
        % 评价次数
        if Problem == 1
            Generations = 700;	 % number of iterations
        elseif Problem == 3
            Generations = 1000;
        else
            Generations = 250;
        end
        
        % 种群规模
        if M == 2
            N = 100;           
        elseif M == 4
            N = 120;
        elseif M == 6
            N = 132;
        elseif M == 8
            N = 156;
        elseif M == 10
            N = 276;
        end
        
        % 独立运行次数
        Runs = 30;
        
        % 变量取值范围
        Boundary = [MaxValue;MinValue];
        
        %-----------------------------------------------------------------------------------------
        % 独立运行若干次实验
        for run = 1: Runs
            % 种群初始化
            Population                    = repmat(MinValue,N,1) + repmat(MaxValue - MinValue,N,1).*rand(N,D); % 随机初始化种群
            FunctionValue                 = F_DTLZ(Population,Problem,M,K);     % 计算目标函数值
            DistanceValue                 = F_distance(FunctionValue,M);     %计算距离值
            
            %-----------------------------------------------------------------------------------------
            % 开始迭代
            for Gene = 1 : Generations
                % 按照规模为2的锦标赛算法进行: 交配选择操作
                % 距离值小的更容易获得产生下一代的机会,类似于自然界中的优秀的个体,
                % 更容易产生后代,使得优秀的基因得以延续和发展,即优胜劣汰
                MatingPool       = MatingSelection(FunctionValue,DistanceValue,M); 
                NewPopulation    = F_operator(Population(MatingPool',:),Boundary); %生成后代种群
                
                Population       = [Population;NewPopulation];                     % 合并两个种群
                FunctionValue    = F_DTLZ(Population,Problem,M,K);        % 再次计算目标函数值,若研究的问题不同,这里的目标函数计算方法也不同
                DistanceValue    = F_distance(FunctionValue,M);                %计算距离值
                
                [~,rank]         = sort(DistanceValue,'ascend');                       %按照升序排序
                % 产生下一代,即从合并后的2N个个体中淘汰掉N个个体,使得种群总体保持为N
                Population       = Population(rank(1:N),:);         	
                FunctionValue    = FunctionValue(rank(1:N),:);
                DistanceValue    = DistanceValue(rank(1:N));
            end
            
            % 输出结果
            F_output(Population,toc,'DTLZ-ISDE+',Problem,M,K,run);
        end
    end
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

2.2 计算ISED+距离

这里的距离值可以直观地理解为个体的适应度,距离值越大,个体适应能力越强。能力强的个体有更大的概率能够延续下一代,并且以较大的概率使得自身能够不被环境所淘汰。

ISED作为一种密度估计指标,通常是作为基于Pareto的进化算法的备用指标,即当进行非支配排序后,若不能够区分不同个体的优劣后,再利用该指标进行判断。ISED虽然能够同时评估种群的收敛性和多样性,但是由于其选择的压力不够大,因此,不能单独作为一种评价指标来指导种群收敛到Pareto前沿。

改进的ISED通过将目标值首先进行最大最小值标准化,再将个体的每个目标值进行求和,使得选择的压力得以有效地改进,这里计算方法如下:

function DistanceValue = F_distance(FunctionValue,M)
	% FunctionValue为目标函数值 ,N为种群规模,M为目标函数的数量
    [N,M] = size(FunctionValue);
    PopObj = FunctionValue;
    
%%  目标值求和:这里并没有直接求和,而是通过求均值的方式,这里主要是想实现排序 
    fmax   = repmat(max(PopObj,[],1),N,1);
    fmin   = repmat(min(PopObj,[],1),N,1);
    PopObj = (PopObj-fmin)./(fmax-fmin);	% 常见的归一化方法:最大最小归一化
    fpr    = mean(PopObj,2);		% 求归一化后每一列元素的均值,即求归一化后个体的标准目标函数的均值
    [~,rank] = sort(fpr);	% 按照个体目标值的均值的升序排序
 
 %%%%%%%%%%%%%% SDE with Sum of Objectives(核心代码)  %%%%%%%%%%%%%%%%%%%%
    DistanceValue = zeros(1,N);                             
    for j = 2 : N
    	% 当个体j的目标函数值大于种群中其他个体q时,取j的目标值,后面在计算欧式距离时,将不会计算当前目标值的欧式距离。
        SFunctionValue = max(PopObj(rank(1:j-1),:),repmat(PopObj(rank(j),:),(j-1),1)); 
        
        Distance = inf(1,j-1); % 先定义欧式距离为无穷大
        for i = 1 : (j-1)
            Distance(i) = norm(SFunctionValue(i,:)-PopObj(rank(j),:))/M;   %norm(A,2) %求A的欧几里德范数 ,和norm(A)相同。
        end
           
        Distance = min(Distance); % 求个体j与种群中其他个体的欧式距离的最小值
        
        DistanceValue(rank(j)) = exp(-Distance); % 这里,通过e的-x的方式,将个体j的距离归一到0~1之间。
        % 由于DistanceValue和Distance之间呈负相关关系,因此距离Distance越大越好的问题被转换为DistanceValue越小越好。
    end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

2.3 交配选择

交配选择操作主要是通过规模为2的锦标赛选择方式,这是在进化算法中常见的选择方式,模拟自然界中一个普遍存在的规律,即优秀个体有更大的概率能够繁衍后代。具体过程如下所示:

在这里插入图片描述

function MatingPool = MatingSelection(PopObj,DistanceValue,M)
    N = size(PopObj,1);

    %% 规模为2的锦标赛选择
    Parent1   = randi(N,1,N);		% 随机产生一个1×N的1~N之间的随机整数
    Parent2   = randi(N,1,N);		% 也可以理解为从N个个体中有放回地随机选择N个个体
    MatingPool = zeros(1,N);
   
    for i = 1:N
    	% 根据距离值比较两个个体,距离值小的个体会被保留下来,以进行交叉和变异操作
       if DistanceValue(Parent1(i)) < DistanceValue(Parent2(i))
           MatingPool(i) = Parent1(i);
       elseif DistanceValue(Parent1(i)) > DistanceValue(Parent2(i))
           MatingPool(i) = Parent2(i);
       else
       	   % 距离值相同,则随机选择一个即可
           if rand< 0.5
                MatingPool(i) = Parent1(i);
           else
                MatingPool(i) = Parent2(i);
           end
       end
    end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

2.4 环境选择

环境选择是在模拟自然界中优胜劣汰的机制,也比较简单,直接计算出个体的ISDE+,并按照升序排列,截取前N个个体即可。
在这里插入图片描述

2.5 操作算子

这部分主要讲解一下产生下一代的具体过程,包括模拟二进制交叉和多项式变异两个操作,注意,这是一种目前常见的实数编码下的交叉和变异操作,其他的内容请大家参考代码的注释加以理解:

function Offspring = F_operator(MatingPool, Boundary)
    [N,D] = size(MatingPool);
%-----------------------------------------------------------------------------------------
% 参数设置
    ProC = 1;			% 交叉概率
    ProM = 1/D;     % 变异概率
    DisC = 20;   	% 交叉操作的分布指数
    DisM = 20;   	% 变异操作的分布指数
%-----------------------------------------------------------------------------------------
% 模拟二进制交叉
    Parent1 = MatingPool(1:N/2,:);
    Parent2 = MatingPool(N/2+1:end,:); 
    beta    = zeros(N/2,D);
    miu     = rand(N/2,D);
    beta(miu<=0.5) = (2*miu(miu<=0.5)).^(1/(DisC+1));
    beta(miu>0.5)  = (2-2*miu(miu>0.5)).^(-1/(DisC+1));
    beta = beta.*(-1).^randi([0,1],N/2,D);
    beta(rand(N/2,D)<0.5) = 1;
    beta(repmat(rand(N/2,1)>ProC,1,D)) = 1;
    Offspring = [(Parent1+Parent2)/2+beta.*(Parent1-Parent2)/2
                 (Parent1+Parent2)/2-beta.*(Parent1-Parent2)/2];
%-----------------------------------------------------------------------------------------
% 多项式变异
    MaxValue = repmat(Boundary(1,:),N,1);
    MinValue = repmat(Boundary(2,:),N,1);
    k    = rand(N,D);
    miu  = rand(N,D);
    Temp = k<=ProM & miu<0.5;
    Offspring(Temp) = Offspring(Temp)+(MaxValue(Temp)-MinValue(Temp)).*((2.*miu(Temp)+(1-2.*miu(Temp)).*(1-(Offspring(Temp)-MinValue(Temp))./(MaxValue(Temp)-MinValue(Temp))).^(DisM+1)).^(1/(DisM+1))-1);
    Temp = k<=ProM & miu>=0.5; 
    Offspring(Temp) = Offspring(Temp)+(MaxValue(Temp)-MinValue(Temp)).*(1-(2.*(1-miu(Temp))+2.*(miu(Temp)-0.5).*(1-(MaxValue(Temp)-Offspring(Temp))./(MaxValue(Temp)-MinValue(Temp))).^(DisM+1)).^(1/(DisM+1)));
%-----------------------------------------------------------------------------------------
% 处理一下下一代个体中越界的变量值
    Offspring(Offspring>MaxValue) = MaxValue(Offspring>MaxValue);
    Offspring(Offspring<MinValue) = MinValue(Offspring<MinValue);
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

2.6 快速非支配排序

ENS_SS.m函数主要是实现快速非支配排序。先介绍一下非支配排序的概念出现在NSGAII中,下边是一个比较经典的图,表示在父代种群经过交叉变异之后,如何进行选择的过程。
在这里插入图片描述
如上图所示,父代种群和子代种群合并在一起,经过非支配排序后,分为5个不同的等级。其中,等级F1中包含合并后种群中的所有非支配解集。等级F2中,包含仅仅被一个F1中的个体支配的个体所组成的集合,其他的以此类推。

然而,非支配排序是很昂贵的,特别是当种群中的个体数量变得很大的时候。这主要是因为在大多数现有的非支配排序算法中,一个解需要与所有其他解进行比较,然后才能分配给一个等级。因此,就有了ENS,即高效的非支配排序算法,感兴趣的同学可以参考一下下面的论文:
An Efficient Approach to Non-dominated Sorting for Evolutionary Multi-objective Optimization

2.7 输出结果

这部分介绍一下,算法如何输出最终结果的,主要涉及到获取非支配解集和导出结果到文件操作。

function F_output(Population,time,Algorithm,Problem,M,K,run)
% 获取非支配解集并导出结果

% 计算目标函数值
FunctionValue = F_DTLZ(Population,Problem,M,K);

% 找到非支配解集
NonDominated  = ENS_SS(FunctionValue,'first')==1;
Population    = Population(NonDominated,:);
FunctionValue = FunctionValue(NonDominated,:);

% 将结果保存到.m文件中
eval(['save DTLZ-ISDE+\', Algorithm,'_', num2str(Problem),'_', num2str(M),'_', num2str(run), ' Population FunctionValue time'])
% 将结果保存到txt中
%savedata(Population   ,[Algorithm,'_', num2str(Problem),'_', num2str(M),'_', num2str(run),'_PS.txt']);
%savedata(FunctionValue,[Algorithm,'_', num2str(Problem),'_', num2str(M),'_', num2str(run),'_PF.txt']);
end

% 将结果保存到txt文件中
function savedata(mat,filename)
f=fopen(filename,'w');
for i=1:size(mat,1)
    for j=1:size(mat,2)
        fprintf(f,'%15.6e',mat(i,j));
    end
    fprintf(f,'\r\n');
end
fclose(f);
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

2.7 DTLZ测试问题的定义

有关DTLZ测试问题的详细介绍这里不做单独说明,函数的定义如下:

function FunctionValue = F_DTLZ(Population,Problem,M, K)

  
 if Problem == 1  % DTLZ1
  
  FunctionValue = zeros(size(Population,1),M);
  g = 100*(K+sum((Population(:,M:end)-0.5).^2 - cos(20.*pi.*(Population(:,M:end)-0.5)),2));
  FunctionValue(:,1) = 0.5.*prod(Population(:,1:M-1),2).*(1+g);
  for i = 2 : (M-1)
    FunctionValue(:,i) = 0.5*prod(Population(:,1:M-i),2).*(1 - Population(:,M-i+1)).*(1 + g);
  end
  FunctionValue(:,M) = 0.5*(1 - Population(:,1)).*(1 + g);
  
end

if Problem == 2  % DTLZ2
    
  FunctionValue = zeros(size(Population,1),M);
  g = sum((Population(:,M:end)-0.5).^2,2);
  FunctionValue(:,1) = prod(cos(pi/2*Population(:,1:M-1)),2).*(1 + g);
  for i = 2 : (M-1)
    FunctionValue(:,i) = prod(cos(pi/2*Population(:,1:M-i)),2).* sin(pi/2*Population(:,M-i+1)).*(1 + g);
  end
  FunctionValue(:,M) =sin(pi/2*Population(:,1)).*(1 + g);
  
end

if Problem == 3  % DTLZ3

  FunctionValue = zeros(size(Population,1),M);
  g = 100*(K+sum((Population(:,M:end)-0.5).^2 - cos(20.*pi.*(Population(:,M:end)-0.5)),2));
  FunctionValue(:,1) = prod(cos(pi/2*Population(:,1:M-1)),2).*(1 + g);
  for i = 2 : (M-1)
    FunctionValue(:,i) = prod(cos(pi/2*Population(:,1:M-i)),2).* sin(pi/2*Population(:,M-i+1)).*(1 + g);
  end
  FunctionValue(:,M) =sin(pi/2*Population(:,1)).*(1 + g);
  
end

if Problem == 4  % DTLZ4

  alpha = 100; 
  FunctionValue = zeros(size(Population,1),M);
  g = sum((Population(:,M:end)-0.5).^2,2);
  FunctionValue(:,1) = prod(cos(pi/2*Population(:,1:M-1).^alpha),2).*(1 + g);
  for i = 2 : (M-1)
    FunctionValue(:,i) = prod(cos(pi/2*Population(:,1:M-i).^alpha),2).* sin(pi/2*Population(:,M-i+1).^alpha).*(1 + g);
  end
  FunctionValue(:,M) =sin(pi/2*Population(:,1).^alpha).*(1 + g);
  
end

if Problem == 5  % DTLZ5

  FunctionValue = zeros(size(Population,1),M);
  g = sum((Population(:,M:end)-0.5).^2,2);
  theta(:,1) = pi/2*Population(:,1);
  gr = g(:,ones(1,M-2)); %replicates gr for the multiplication below
  theta(:,2:M-1) = pi./(4*(1+gr)) .* (1 + 2*gr.*Population(:,2:M-1));
  FunctionValue(:,1) = prod(cos(theta(:,1:M-1)),2).*(1 + g);
  for i = 2 : (M-1)
    FunctionValue(:,i) = prod(cos(theta(:,1:M-i)),2).*sin(theta(:,M-i+1)).*(1 + g);
  end
  FunctionValue(:,M) = sin(theta(:,1)).*(1 + g);
  
end

if Problem == 6  % DTLZ6
  
  FunctionValue = zeros(size(Population,1),M);
  g = sum(Population(:,M:end).^(0.1),2);
  theta(:,1) = pi/2*Population(:,1);
  gr = g(:,ones(1,M-2)); %replicates gr for the multiplication below
  theta(:,2:M-1) = pi./(4*(1+gr)) .* (1 + 2*gr.*Population(:,2:M-1));
  FunctionValue(:,1) = prod(cos(theta(:,1:M-1)),2).*(1 + g);
  for i = 2 : (M-1)
    FunctionValue(:,i) = prod(cos(theta(:,1:M-i)),2).*sin(theta(:,M-i+1)).*(1 + g);
  end
  FunctionValue(:,M) = sin(theta(:,1)).*(1 + g);
  
end


if Problem == 7  % DTLZ7
 
  FunctionValue = zeros(size(Population,1),M);
  g = 1 + 9/K *sum(Population(:,M:end),2);
  FunctionValue(:,1:M-1) = Population(:,1:M-1);
  gaux = g(:,ones(1,M-1)); %replicates the g function
  h = M - sum(FunctionValue(:,1:M-1)./(1+gaux).*(1 + sin(3*pi*FunctionValue(:,1:M-1))),2);
  FunctionValue(:,M) = h.*(1 + g);
  
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/164084
推荐阅读
相关标签
  

闽ICP备14008679号