当前位置:   article > 正文

python调用Hanlp做命名实体识别以及词性标注

hanlp命名实体识别-python3实现

之前需要做一个中文命名实体识别的api,看完了一些相关论文以后觉得短时间内自己实现不大现实,于是找了一些开源工具,其中哈工大的LTP效果是很好的,但是免费使用限流量,需要给钱才行; NLPIR的pynlpir似乎还不能支持命名实体识别等复杂工作,只能做一些分词之类;最后还剩下Hanlp,感谢Hanlp的作者hancks无私的将代码开源,还提供了那么详细的文档。

pyhanlp只有少数功能,其他复杂一点的功能需要使用python调用java代码来实现。
以下是api的模型部分,大多是照着文档写成的。
python调用java需要jpype库,具体安装请参考之前的博客:jpype安装的简便方法

-- coding: utf-8 --

"""
Created on Thu May 10 09:19:55 2018

@author: wang小尧
"""

import jpype

#路径
jvmPath = jpype.getDefaultJVMPath() # 获得系统的jvm路径
ext_classpath = r"./ner/hanlp\hanlp-1.6.3.jar:./ner/hanlp"
jvmArg = '-Djava.class.path=' + ext_classpath
jpype.startJVM(jvmPath, jvmArg, "-Xms1g", "-Xmx1g")

#繁体转简体
def TraditionalChinese2SimplifiedChinese(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
return HanLP.convertToSimplifiedChinese(sentence_str)

#切词&命名实体识别与词性标注(可以粗略识别)
def NLP_tokenizer(sentence_str):
NLPTokenizer = jpype.JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
return NLPTokenizer.segment(sentence_str)

#地名识别,标注为ns
def Place_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enablePlaceRecognize(True)
return HanLP.segment(sentence_str)

#人名识别,标注为nr
def PersonName_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enableNameRecognize(True)
return HanLP.segment(sentence_str)

#机构名识别,标注为nt
def Organization_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enableOrganizationRecognize(True)
return HanLP.segment(sentence_str)

#标注结果转化成列表
def total_result(function_result_input):
x = str(function_result_input)
y = x[1:len(x)-1]
y = y.split(',')
return y

#时间实体
def time_result(total_result):
z = []
for i in range(len(total_result)):
if total_result[i][-2:] == '/t':
z.append(total_result[i])
return z

#Type_Recognition 可以选 ‘place’,‘person’,‘organization’三种实体,
#返回单一实体类别的列表
def single_result(Type_Recognition,total_result):
if Type_Recognition == 'place':
Type = '/ns'
elif Type_Recognition == 'person':
Type = '/nr'
elif Type_Recognition == 'organization':
Type = '/nt'
else:
print ('请输入正确的参数:(place,person或organization)')
z = []
for i in range(len(total_result)):
if total_result[i][-3:] == Type:
z.append(total_result[i])
return z

#把单一实体结果汇总成一个字典
def dict_result(sentence_str):
sentence = TraditionalChinese2SimplifiedChinese(sentence_str)
total_dict = {}
a = total_result(Place_Recognize(sentence))
b = single_result('place',a)
c = total_result(PersonName_Recognize(sentence))
d = single_result('person',c)
e = total_result(Organization_Recognize(sentence))
f = single_result('organization',e)
g = total_result(NLP_tokenizer(sentence))
h = time_result(g)
total_list = [i for i in [b,d,f,h]]
total_dict.update(place = total_list[0],person = total_list[1],organization = total_list[2],time = total_list[3])
jpype.shutdownJVM()#关闭JVM虚拟机
return total_dict

#测试
test_sentence="2018年武胜县新学乡政府大楼门前锣鼓喧天,6月份蓝翔给宁夏固原市彭阳县红河镇捐赠了挖掘机,×××计算技术研究所的宗成庆教授负责教授自然语言处理课程,而他的学生现在正在香港看×××"
print (dict_result(test_sentence))

识别结果:
python调用Hanlp做命名实体识别以及词性标注

{'place': [' 武胜县/ns', ' 宁夏/ns', ' 固原市/ns', ' 彭阳县/ns', ' 红河镇/ns', ' 香港/ns'], 'person': [' 宗成庆/nr'], 'organization': [' 蓝翔/nt', ' ×××计算技术研究所/nt'], 'time': ['2018年/t', ' 6月份/t', ' 现在/t']}

遇到的问题:
在弄这个api时遇到了一些问题,就是当我打开java虚拟机JVM,功能正常使用完关闭了JVM,但是再打开的时候就会报错,所以得一直保持一个JVM一直打开的状态,或者重启kernel才行。网上找了找也没能找到靠谱的解决方案,这个问题只有以后慢慢解决了。如果有人知道如何处理,可以给我发私信。

文章来源于wong小尧的博客

转载于:https://blog.51cto.com/13993767/2312264

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/172828
推荐阅读
相关标签
  

闽ICP备14008679号