当前位置:   article > 正文

行人检测 特征 典型方法_行人识别特征

行人识别特征

1.行人特征

行人特征描述子可以分为三类:底层特征,混合特征和基于学习的特征。底层特征指的是颜色、纹理和梯度等基本的图像特征。这些单一特征可以计算速度快,并且可以利用积分图技术快速计算,但是只从某一方面如梯度或者纹理来描述行人特征,判别力较差。混合特征指的是多种底层特征的融合,或者是底层特征的高阶统计特征。这种特征能从不同的侧面来刻画图像特征,提高检测的准确率,但是随着特征的维度增加,特征的计算和分类器的检测时间也增加,影响实时性。基于学习的特征目前一般是指神经网络直接从原始图像学习得到的特征。这种特征能从大量的样本中学习出判断能力较强的特征,在行人检测中表现很出色,但是它的计算依赖高性能的硬件,也和训练样本密切相关,若样本不具有代表性,很难学习到好的特征。

用于行人检测的底层特征主要包括Haar, HOG, LUV, LBP等。Haar特征由VJ在应用到人脸检测中,其特征的简单表示如图所示。每一个特征值对应为图中一个矩形区域块的计算结果,在计算时通过黑色部分像素之和减去白色部分像素之和得到。对同一个区域块做计算时,不同的计算方法将得到同一个区域块不同的特征值。


Dalal等提出的HOG[2] 特征是目前最有效的行人单一特征描述子。HOG刻画了图像的局部梯度幅值和方向特征,基于梯度特征,对块的特

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/176276
推荐阅读
相关标签
  

闽ICP备14008679号