赞
踩
前提准备条件:
已安装好了的pycharm,pytorch,yolov5
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
下载好,因为是第一次做于是只选取其中的63张图片
打开软件精灵标记助手,进行标注后导出
在yolov5/data下新建项目annotations(存放xml文件),imageSets空项目,images(存放原始图片)(原本不是这个名字,但代码中读取图片用的是images,于是懒得改代码,就把自己的项目名称改了)
import os import random trainval_percent = 0.1 train_percent = 0.9 xmlfilepath = 'data/Annotations' txtsavepath = 'data/ImageSets' total_xml = os.listdir(xmlfilepath)#xml文件路径 num = len(total_xml) list = range(num) tv = int(num * trainval_percent) tr = int(tv * train_percent) trainval = random.sample(list, tv) train = random.sample(trainval, tr) ftrainval = open('data/ImageSets/trainval.txt', 'w') ftest = open('data/ImageSets/test.txt', 'w') ftrain = open('data/ImageSets/train.txt', 'w') fval = open('data/ImageSets/val.txt', 'w') for i in list: name = total_xml[i][:-4] + '\n' if i in trainval: ftrainval.write(name) if i in train: ftest.write(name) else: fval.write(name) else: ftrain.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close()
在imageSets文件夹中生成四个txt文件
import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join sets = ['train', 'test','val'] classes = ['鱼'] def convert(size, box):# xml坐标转化为yolo坐标 dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h)#返回中心点坐标以及宽度和高度 def convert_annotation(image_id):#将annotation下的xml文件转化为label的.txt文件 in_file = open('data/Annotations/%s.xml' % (image_id)) out_file = open('data/labels/%s.txt' % (image_id), 'w') tree = ET.parse(in_file)#打开xml文件 root = tree.getroot()#得到xml文件对应的根节点 size = root.find('size') w = int(size.find('width').text)#图片的宽 h = int(size.find('height').text)#图片的高 for obj in root.iter('object'):#遍历所有框 difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) b1, b2, b3, b4 = b # 标注越界修正 if b2 > w: b2 = w if b4 > h: b4 = h b = (b1, b2, b3, b4) bb = convert((w, h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() print(wd) for image_set in sets: if not os.path.exists('data/labels/'): os.makedirs('data/labels/') image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split() list_file = open('data/%s.txt' % (image_set), 'w') for image_id in image_ids: list_file.write('data/images/%s.jpg\n' % (image_id)) convert_annotation(image_id) list_file.close()
值得一提的是,注意代码中的classes与标注时的类名必须完全一致,我第一次就是因为一个是鱼一个是fish而在labels中得到一堆空文件
最终labels文件中得到图片对应的txt,在data目录下生成了train.txt,test.txt,val.txt
经常遇到.cache文件,删了即可
在data目录下新建文件fish.yaml
- # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
-
- train: data/train.txt # 128 images
- val: data/val.txt
- #test:data/test.txt
- # number of classes
- nc: 1
- # class names
- names: [ '鱼' ]
在models文件夹中修改使用的预配重文件(类别nc=1)
最后修改train.py
- parser.add_argument('--weights', type=str, default='data/scripts/weights/yolov5s.pt', help='initial weights path')
- parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
- parser.add_argument('--data', type=str, default= 'data/fish.yaml', help='dataset.yaml path')
- parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
- parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
- parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs, -1 for autobatch')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
- parser.add_argument('--rect', action='store_true', help='rectangular training')
- parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
- parser.add_argument('--noval', action='store_true', help='only validate final epoch')
- parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
- parser.add_argument('--noplots', action='store_true', help='save no plot files')
- parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
相关参数可见
http://www.tlcement.com/35410.html
在用detact检测时
在data文件夹里放了sss检测文件夹
- parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp8/weights/best.pt', help='model path or triton URL')
- parser.add_argument('--source', type=str, default='data/sss/', help='file/dir/URL/glob/screen/0(webcam)')
- parser.add_argument('--data', type=str, default='data/fish.yaml', help='(optional) dataset.yaml path')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
- parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--view-img', action='store_true', help='show results')
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
- parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
参考文章
https://blog.csdn.net/weixin_44145782/article/details/113983421
https://blog.csdn.net/weixin_48270248/article/details/112600563
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。