赞
踩
人脸最基础的操作之一,是要将人脸识别出来后,把真个人脸给抠出来,这样就可以对人脸进行各种操作,比如:美白、去痘等等,本篇是基于人脸识别库,结合阈值分割图片的mask操作以及一些两个图片的叠加操作,实现了给人脸叠加上京剧脸谱的效果:
原图如下(由AI生成不涉及肖像权):
经过处理如下:
本篇处理的流程思路如下:
Step1、首先利用face_recognition库对人脸进行识别,并识别出人物的下部脸轮廓,并利用opencv的多边形绘制工具polylines,绘制出人物脸部的下半部轮廓,由于识别库没有提供上半部轮廓的识别功能,暂时用opencv的矩形绘制工具rectangle,把人脸的上半部以矩形表示,总体形成一个mask:
Step2、那么接下来,就是要将人脸的上半部分轮廓给找出来,这样就可以找到整个脸的轮廓,这里用的方法是通过简单的阈值分割,对人脸原图进行阈值分割,并进行形态学的膨胀操作,这样可以把发际线给简单找出来(如下图标红部分):
Step3:接下来,利用以上两步找到的mask信息,对准备好的京剧脸谱图像进行运算,结果是把原图中的人脸多余部分给去除掉,剩下匹配人脸的部分:
Step4:接下来,就是跟上几节原理一样,把具有alpha通道的png脸谱图(可以通过ps做出来),通过眼睛和嘴巴的定位,较为准确地放到人脸上面,我这里眼睛比较对位了,但是鼻子还需要优化一下。通过一个规则逻辑进行绘制(线性叠加):
合成地像素点值=人脸原图像素*(1-alpha值)+alpha值*((1-人脸mask值)脸谱像素+人脸mask值人脸原图像素)
对应源代码中的:
for c in range(0,3):
backimg[y1:y2, x1:x2, c] = (alpha_huzijbackimg[y1:y2,x1:x2,c]) + (alpha_huzip((maskalbackimg[y1:y2,x1:x2,c]) + mask3[y1:y2,x1:x2]((1-ddratio)backimg[y1:y2,x1:x2,c]+ddratio(mask[:usy,:usx,c]))))
结束
PS:后续需要优化,现在看起来不是很自然,可以通过边缘的模糊,纹理的叠加,以及一些变形的操作,把脸谱与人脸做到更加精细的叠加。
# -*- coding: utf-8 -*- """ Created on Sat Apr 23 17:13:28 2022 @author: JAMES FEI Copyright (C) 2022 FEI PANFENG, All rights reserved. THIS SOFTEWARE, INCLUDING DOCUMENTATION,IS PROTECTED BY COPYRIGHT CONTROLLED BY FEI PANFENG ALL RIGHTS ARE RESERVED. """ import face_recognition import cv2 import numpy as np import time video_capture = cv2.VideoCapture(0) def threshold(inputimg,midthreshold=127,maxthreshold=255,binarymod=cv2.THRESH_BINARY): img=inputimg if len(img.shape)==3: # 将图片转为灰度图 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) retval, output = cv2.threshold(img,midthreshold, maxthreshold, binarymod) #print(output.shape) return output process_this_frame = True #载入胡子,带透明通道 maskk = cv2.imread('mask.png', cv2.IMREAD_UNCHANGED) def putonmask(mask,backimg,mask3,dilated,eyeline,noseline,me=140,ne=126,lefteye=(162,258),leftcenter=(50,50)): height=mask.shape[0] width=mask.shape[1] ratiow=eyeline/140 ratioh=noseline/126 print("mask shape",mask.shape,ratiow,ratioh) mask = cv2.resize(mask,(int(width*ratiow),int(height*ratioh)),interpolation=cv2.INTER_LINEAR) lefteye_mask=(int(lefteye[0]*(eyeline/140)),int(lefteye[1]*(noseline/126))) (x1,y1)=(leftcenter[0]-lefteye_mask[0],leftcenter[1]-lefteye_mask[1]) x2 = x1 + mask.shape[1] y2 = y1 + mask.shape[0] usy=mask.shape[0] usx=mask.shape[1] if x2>backimg.shape[1]: x2=backimg.shape[1] usx=backimg.shape[1]-x1 if y2>backimg.shape[0]: y2=backimg.shape[0] usy=backimg.shape[0]-y1 if backimg.shape[2] == 3: b, g, r = cv2.split(backimg) alpha = np.ones(b.shape, dtype=b.dtype) * 255 # 创建Alpha通道 backimg = cv2.merge((b, g, r, alpha)) alpha_huzip = mask[:usy,:usx,3] / 255.0 #print("shapmask,mask3",alpha_huzip.shape,mask3[y1:y2, x1:x2].shape) #alpha_huzip=alpha_huzip mask[:usy,:usx,:3] = cv2.bitwise_and(mask[:usy,:usx,:3], mask[:usy,:usx,:3], mask = mask3[y1:y2, x1:x2]) #(1-mask3[y1:y2, x1:x2])*backimg[y1:y2,x1:x2,c] for cc in range(3): mask[:usy,:usx,cc]=mask[:usy,:usx,cc]*(1-dilated[y1:y2, x1:x2])+backimg[y1:y2,x1:x2,cc]*dilated[y1:y2, x1:x2] cv2.imshow("step3:",mask[:usy,:usx,:3]) alpha_huzij = 1 - alpha_huzip some=0 for i in range(y2-y1): for j in range(x2-x1): if mask3[i,j]!=0 or mask3[i,j]!=1: if mask3[i,j]>0.5: mask3[i,j]=1 else: mask3[i,j]=0 print("0,1:",some) maskal=1-mask3[y1:y2,x1:x2] ddratio=0.5 for c in range(0,3): backimg[y1:y2, x1:x2, c] = (alpha_huzij*backimg[y1:y2,x1:x2,c]) + (alpha_huzip*((maskal*backimg[y1:y2,x1:x2,c]) + mask3[y1:y2,x1:x2]*((1-ddratio)*backimg[y1:y2,x1:x2,c]+ddratio*(mask[:usy,:usx,c])))) #backimg[y1:y2, x1:x2, c] = ((maskal*backimg[y1:y2,x1:x2,c]) + mask3[y1:y2,x1:x2]*((1-ddratio)*backimg[y1:y2,x1:x2,c]+ddratio*(mask[:usy,:usx,c]))) #cv2.imshow('moni33tor', backimg[:,:,:3]) return backimg[:,:,:3] iscap=False orang=cv2.imread('avatar1.png') while True: # 读取摄像头画面 if iscap: ret, frame = video_capture.read() else: frame=orang.copy() # 改变摄像头图像的大小,图像小,所做的计算就少 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。 rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # 根据encoding来判断是不是同一个人,是就输出true,不是为flase face_landmarks_list = face_recognition.face_landmarks(rgb_small_frame) for face_landmarks in face_landmarks_list: #打印此图像中每个面部特征的位置 facial_features = [ 'chin', 'left_eyebrow', 'right_eyebrow', 'nose_bridge', 'nose_tip', 'left_eye', 'right_eye', 'top_lip', 'bottom_lip' ] #创建脸部遮罩 mask1=np.zeros(frame.shape,np.uint8) #下脸部 epoints=[] highestchin_y=10000 leftchin_x=0 rightchin_x=10000 for point in face_landmarks["chin"]: epoints.append([point[0]*4,point[1]*4]) if highestchin_y>point[1]*4: highestchin_y=point[1]*4 if leftchin_x<point[0]*4: leftchin_x=point[0]*4 if rightchin_x>point[0]*4: rightchin_x=point[0]*4 cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[255, 255, 255], thickness=1) cv2.fillPoly(mask1, [np.array(epoints)], color=[255, 255, 255]) uppoints=[[leftchin_x,highestchin_y],[rightchin_x,highestchin_y-10],[rightchin_x,0],[leftchin_x,0]] cv2.rectangle(mask1, (leftchin_x,0),(rightchin_x,highestchin_y+10), (255, 255, 255), -1) cv2.imshow("Step1:mask1",mask1) maskup=threshold(frame,midthreshold=88,maxthreshold=255,binarymod=cv2.THRESH_BINARY_INV) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7,7)) dilated = cv2.dilate(maskup.copy(), kernel, 10) cv2.imshow("Step2:",dilated) lef_center_x=0 lef_center_y=0 epoints=[] for point in face_landmarks["left_eye"]: epoints.append([point[0]*4,point[1]*4]) cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 255], thickness=5) cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0]) rig_center_x=0 rig_center_y=0 epoints=[] for point in face_landmarks["right_eye"]: epoints.append([point[0]*4,point[1]*4]) cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 255], thickness=5) cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0]) top_lip_x=0 top_lip_y=0 epoints=[] for point in face_landmarks["top_lip"]: top_lip_x+=point[0]*4 top_lip_y+=point[1]*4 epoints.append([point[0]*4,point[1]*4]) top_lip_x= int(top_lip_x/len(face_landmarks["top_lip"])) top_lip_y= int(top_lip_y/len(face_landmarks["top_lip"])) cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 0], thickness=1) cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0]) epoints=[] for point in face_landmarks["bottom_lip"]: epoints.append([point[0]*4,point[1]*4]) cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 0], thickness=1) cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0]) maskgray = cv2.cvtColor(mask1,cv2.COLOR_BGR2GRAY) ret,mask = cv2.threshold(maskgray,175,255,cv2.THRESH_BINARY) lef_center_x=0 lef_center_y=0 for point in face_landmarks["left_eye"]: lef_center_x+=point[0]*4 lef_center_y+=point[1]*4 lef_center_x=int(lef_center_x/len(face_landmarks["left_eye"])) lef_center_y=int(lef_center_y/len(face_landmarks["left_eye"])) rig_center_x=0 rig_center_y=0 for point in face_landmarks["right_eye"]: rig_center_x+=point[0]*4 rig_center_y+=point[1]*4 rig_center_x=int(rig_center_x/len(face_landmarks["left_eye"])) rig_center_y=int(rig_center_y/len(face_landmarks["left_eye"])) dilated[highestchin_y:,:]=0 cv2.circle(dilated, (lef_center_x,lef_center_y), 105, 0, -1) cv2.circle(dilated, (rig_center_x,rig_center_y), 105, 0, -1) for i in range(dilated.shape[0]): for j in range(dilated.shape[1]): if dilated[i,j]>0.5: dilated[i,j]=1 else: dilated[i,j]=0 cv2.imshow("d",dilated) #去掉眼睛和嘴唇 nosey=0 for point in face_landmarks["nose_tip"]: if nosey<point[1]*4: nosey=point[1]*4 print("nosey",nosey,nosey-lef_center_y) output1=putonmask(maskk,frame,mask,dilated,(rig_center_x-lef_center_x),(nosey-lef_center_y),leftcenter=(lef_center_x,lef_center_y)) cv2.imshow('monitor', output1) time.sleep(0.1) # 按Q退出 if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
代码用到的原图如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。