当前位置:   article > 正文

人脸识别有趣应用3——抠出人脸并给人脸涂上戏剧脸谱_人脸识别可以按正方形框抠出人脸图吗

人脸识别可以按正方形框抠出人脸图吗

前言

人脸最基础的操作之一,是要将人脸识别出来后,把真个人脸给抠出来,这样就可以对人脸进行各种操作,比如:美白、去痘等等,本篇是基于人脸识别库,结合阈值分割图片的mask操作以及一些两个图片的叠加操作,实现了给人脸叠加上京剧脸谱的效果:
原图如下(由AI生成不涉及肖像权):
在这里插入图片描述
经过处理如下:
在这里插入图片描述

原理

本篇处理的流程思路如下:
Step1、首先利用face_recognition库对人脸进行识别,并识别出人物的下部脸轮廓,并利用opencv的多边形绘制工具polylines,绘制出人物脸部的下半部轮廓,由于识别库没有提供上半部轮廓的识别功能,暂时用opencv的矩形绘制工具rectangle,把人脸的上半部以矩形表示,总体形成一个mask:
在这里插入图片描述

Step2、那么接下来,就是要将人脸的上半部分轮廓给找出来,这样就可以找到整个脸的轮廓,这里用的方法是通过简单的阈值分割,对人脸原图进行阈值分割,并进行形态学的膨胀操作,这样可以把发际线给简单找出来(如下图标红部分):
在这里插入图片描述
Step3:接下来,利用以上两步找到的mask信息,对准备好的京剧脸谱图像进行运算,结果是把原图中的人脸多余部分给去除掉,剩下匹配人脸的部分:
在这里插入图片描述
Step4:接下来,就是跟上几节原理一样,把具有alpha通道的png脸谱图(可以通过ps做出来),通过眼睛和嘴巴的定位,较为准确地放到人脸上面,我这里眼睛比较对位了,但是鼻子还需要优化一下。通过一个规则逻辑进行绘制(线性叠加):
合成地像素点值=人脸原图像素*(1-alpha值)+alpha值*((1-人脸mask值)脸谱像素+人脸mask值人脸原图像素)
对应源代码中的:
for c in range(0,3):
backimg[y1:y2, x1:x2, c] = (alpha_huzijbackimg[y1:y2,x1:x2,c]) + (alpha_huzip((maskalbackimg[y1:y2,x1:x2,c]) + mask3[y1:y2,x1:x2]((1-ddratio)backimg[y1:y2,x1:x2,c]+ddratio(mask[:usy,:usx,c]))))
结束
PS:后续需要优化,现在看起来不是很自然,可以通过边缘的模糊,纹理的叠加,以及一些变形的操作,把脸谱与人脸做到更加精细的叠加。

Python源代码

# -*- coding: utf-8 -*-
"""
Created on Sat Apr 23 17:13:28 2022

@author: JAMES FEI 
Copyright (C) 2022 FEI PANFENG, All rights reserved.
THIS SOFTEWARE, INCLUDING DOCUMENTATION,IS PROTECTED BY COPYRIGHT CONTROLLED 
BY FEI PANFENG ALL RIGHTS ARE RESERVED.
"""
import face_recognition
import cv2
import numpy as np
import time

video_capture = cv2.VideoCapture(0)

def threshold(inputimg,midthreshold=127,maxthreshold=255,binarymod=cv2.THRESH_BINARY):
  
    img=inputimg    
    if len(img.shape)==3:
        # 将图片转为灰度图
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
 
    retval, output = cv2.threshold(img,midthreshold, maxthreshold, binarymod)
    #print(output.shape)
    return output

process_this_frame = True
 #载入胡子,带透明通道
maskk = cv2.imread('mask.png', cv2.IMREAD_UNCHANGED)

def putonmask(mask,backimg,mask3,dilated,eyeline,noseline,me=140,ne=126,lefteye=(162,258),leftcenter=(50,50)):  
    
    height=mask.shape[0]
    width=mask.shape[1]
    
    ratiow=eyeline/140
    ratioh=noseline/126
    
    
    print("mask shape",mask.shape,ratiow,ratioh)
    mask = cv2.resize(mask,(int(width*ratiow),int(height*ratioh)),interpolation=cv2.INTER_LINEAR)  
    
    lefteye_mask=(int(lefteye[0]*(eyeline/140)),int(lefteye[1]*(noseline/126)))
    
    (x1,y1)=(leftcenter[0]-lefteye_mask[0],leftcenter[1]-lefteye_mask[1])
    
    x2 = x1 + mask.shape[1]
    y2 = y1 + mask.shape[0] 
    usy=mask.shape[0] 
    usx=mask.shape[1]
    
    if x2>backimg.shape[1]:
        x2=backimg.shape[1]
        usx=backimg.shape[1]-x1
        
    if y2>backimg.shape[0]:
        y2=backimg.shape[0]
        usy=backimg.shape[0]-y1
    
    
    if backimg.shape[2] == 3:       
        b, g, r = cv2.split(backimg) 
        alpha = np.ones(b.shape, dtype=b.dtype) * 255 # 创建Alpha通道 
        backimg = cv2.merge((b, g, r, alpha))
 
    alpha_huzip = mask[:usy,:usx,3] / 255.0
    
    #print("shapmask,mask3",alpha_huzip.shape,mask3[y1:y2, x1:x2].shape)
    #alpha_huzip=alpha_huzip
    mask[:usy,:usx,:3] = cv2.bitwise_and(mask[:usy,:usx,:3], mask[:usy,:usx,:3], mask = mask3[y1:y2, x1:x2])
    
    #(1-mask3[y1:y2, x1:x2])*backimg[y1:y2,x1:x2,c]    
    
    for cc in range(3):
        mask[:usy,:usx,cc]=mask[:usy,:usx,cc]*(1-dilated[y1:y2, x1:x2])+backimg[y1:y2,x1:x2,cc]*dilated[y1:y2, x1:x2]
   
    cv2.imshow("step3:",mask[:usy,:usx,:3])
    
    alpha_huzij = 1 - alpha_huzip
    
    
    some=0
    for i in range(y2-y1):
        for j in range(x2-x1):
            if mask3[i,j]!=0 or mask3[i,j]!=1:
                if mask3[i,j]>0.5:
                    mask3[i,j]=1
                else:
                    mask3[i,j]=0
    print("0,1:",some)
    
    maskal=1-mask3[y1:y2,x1:x2]
    ddratio=0.5
    for c in range(0,3):
        backimg[y1:y2, x1:x2, c] = (alpha_huzij*backimg[y1:y2,x1:x2,c]) + (alpha_huzip*((maskal*backimg[y1:y2,x1:x2,c]) + mask3[y1:y2,x1:x2]*((1-ddratio)*backimg[y1:y2,x1:x2,c]+ddratio*(mask[:usy,:usx,c]))))
        #backimg[y1:y2, x1:x2, c] = ((maskal*backimg[y1:y2,x1:x2,c]) + mask3[y1:y2,x1:x2]*((1-ddratio)*backimg[y1:y2,x1:x2,c]+ddratio*(mask[:usy,:usx,c])))
    
    #cv2.imshow('moni33tor', backimg[:,:,:3])
    return backimg[:,:,:3]

iscap=False
orang=cv2.imread('avatar1.png')
while True:
    # 读取摄像头画面
    if iscap:
        ret, frame = video_capture.read()
    else:
        frame=orang.copy()    

    # 改变摄像头图像的大小,图像小,所做的计算就少
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:
        # 根据encoding来判断是不是同一个人,是就输出true,不是为flase
     
        face_landmarks_list = face_recognition.face_landmarks(rgb_small_frame)
        for face_landmarks in face_landmarks_list:
        #打印此图像中每个面部特征的位置
            facial_features = [
                    
                    'chin',
                    'left_eyebrow',
                    'right_eyebrow',
                    'nose_bridge',
                    'nose_tip',
                    'left_eye',
                    'right_eye',
                    'top_lip',
                    'bottom_lip'
            ]

    

    #创建脸部遮罩
    mask1=np.zeros(frame.shape,np.uint8)
    #下脸部
    epoints=[]
    highestchin_y=10000
    leftchin_x=0
    rightchin_x=10000
    for point in face_landmarks["chin"]:
        epoints.append([point[0]*4,point[1]*4])  
        if highestchin_y>point[1]*4:
            highestchin_y=point[1]*4    
        if leftchin_x<point[0]*4:
            leftchin_x=point[0]*4
        if rightchin_x>point[0]*4:
            rightchin_x=point[0]*4   

    cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[255, 255, 255], thickness=1)
    cv2.fillPoly(mask1, [np.array(epoints)], color=[255, 255, 255]) 
    
    uppoints=[[leftchin_x,highestchin_y],[rightchin_x,highestchin_y-10],[rightchin_x,0],[leftchin_x,0]]
    cv2.rectangle(mask1, (leftchin_x,0),(rightchin_x,highestchin_y+10), (255, 255, 255), -1)
   
    cv2.imshow("Step1:mask1",mask1)
    
    maskup=threshold(frame,midthreshold=88,maxthreshold=255,binarymod=cv2.THRESH_BINARY_INV)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7,7))
    dilated = cv2.dilate(maskup.copy(), kernel, 10)   
    
    cv2.imshow("Step2:",dilated)
    
    
   

    lef_center_x=0
    lef_center_y=0
    epoints=[]
    for point in face_landmarks["left_eye"]:
        epoints.append([point[0]*4,point[1]*4])    

            
    cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 255], thickness=5)
    cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0])

    rig_center_x=0
    rig_center_y=0
    epoints=[]
    for point in face_landmarks["right_eye"]:
            epoints.append([point[0]*4,point[1]*4])    
    cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 255], thickness=5)
    cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0])


    top_lip_x=0
    top_lip_y=0
    epoints=[]
    for point in face_landmarks["top_lip"]:
        top_lip_x+=point[0]*4
        top_lip_y+=point[1]*4
        epoints.append([point[0]*4,point[1]*4]) 
    
    top_lip_x= int(top_lip_x/len(face_landmarks["top_lip"]))   
    top_lip_y= int(top_lip_y/len(face_landmarks["top_lip"]))      
   
    cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 0], thickness=1)
    cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0])  

   
    epoints=[]
    for point in face_landmarks["bottom_lip"]:
        epoints.append([point[0]*4,point[1]*4])           
   
    cv2.polylines(mask1, [np.array(epoints)], isClosed=True, color=[0, 0, 0], thickness=1)
    cv2.fillPoly(mask1, [np.array(epoints)], color=[0, 0, 0])  
   
    
    maskgray = cv2.cvtColor(mask1,cv2.COLOR_BGR2GRAY)
    ret,mask = cv2.threshold(maskgray,175,255,cv2.THRESH_BINARY)

    
    lef_center_x=0
    lef_center_y=0
    
    for point in face_landmarks["left_eye"]:
            lef_center_x+=point[0]*4
            lef_center_y+=point[1]*4
    lef_center_x=int(lef_center_x/len(face_landmarks["left_eye"]))
    lef_center_y=int(lef_center_y/len(face_landmarks["left_eye"]))
    
    rig_center_x=0
    rig_center_y=0
    
    for point in face_landmarks["right_eye"]:
            rig_center_x+=point[0]*4
            rig_center_y+=point[1]*4
    rig_center_x=int(rig_center_x/len(face_landmarks["left_eye"]))
    rig_center_y=int(rig_center_y/len(face_landmarks["left_eye"]))
    
    
    
    dilated[highestchin_y:,:]=0
    
    cv2.circle(dilated, (lef_center_x,lef_center_y), 105, 0, -1)  
    cv2.circle(dilated, (rig_center_x,rig_center_y), 105, 0, -1)     
    
    for i in range(dilated.shape[0]):
        for j in range(dilated.shape[1]):
            if dilated[i,j]>0.5:
                dilated[i,j]=1
            else:
                dilated[i,j]=0
                
        
    
    cv2.imshow("d",dilated)
    #去掉眼睛和嘴唇
    
    
    nosey=0
    for point in face_landmarks["nose_tip"]:
        if nosey<point[1]*4:
            nosey=point[1]*4
        
    print("nosey",nosey,nosey-lef_center_y)
    output1=putonmask(maskk,frame,mask,dilated,(rig_center_x-lef_center_x),(nosey-lef_center_y),leftcenter=(lef_center_x,lef_center_y))
    cv2.imshow('monitor', output1)
    time.sleep(0.1)
    # 按Q退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

video_capture.release()
cv2.destroyAllWindows()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271

代码用到的原图如下:
在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/231670
推荐阅读
相关标签
  

闽ICP备14008679号