赞
踩
二叉树是每个结点最多有两个子树的树结构,即结点的度最大为2。通常子树被称作”左子树”和”右子树”。二叉树是一个连通的无环图。
二叉树是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:(1)、空二叉树;(2)、只有一个根结点的二叉树;(3)、只有左子树;(4)、只有右子树;(5)、完全二叉树。
二叉树类型:
(1)、满二叉树:深度(层数)为k,且有2^k-1个结点的二叉树。这种树的特点是每一层上的结点数都是最大结点数。即除了叶结点外每一个结点都有左右子树且叶节点都处在最低层。
(2)、完全二叉树:除最后一层外,其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,即叶子结点都是从左到右依次排布。具有n个节点的完全二叉树的深度为floor(log(2n))+1。深度为k的完全二叉树,至少有2^(k-1)个结点,至多有(2^k)-1个结点。
(3)、平衡二叉树:又被称为AVL树,它是一颗二叉排序树,且具有以下性质:它是一颗空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一颗平衡二叉树。
(4)、斜树:所有的结点都只有左子树(左斜树),或者只有右子树(右斜树)。
(5)、二叉搜素树(或二叉排序树):特殊的二叉树,每个结点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大。二叉搜索树的左右子树也都是二叉搜索树。按中序遍历,则会得到按升序排列的有序数据集。
二叉树不是树的一种特殊情形。
遍历二叉树:按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。对一颗二叉树的遍历有四种情况:先序遍历、中序遍历、后序遍历、按层遍历。
(1)、先序遍历:先访问根结点,再先序遍历左子树,最后再先序遍历右子树,即先访问根结点-------左子树------右子树。
(2)、中序遍历:先中序遍历左子树,然后再访问根结点,最后再中序遍历右子树,即先访问左子树------根结点------右子树。
(3)、后序遍历:先后序遍历左子树,然后再后序遍历右子树,最后再访问根结点,即先访问左子树------右子树------根结点。
(4)、按层遍历:从上到下,从左到右依次访问结点。
下面代码是二叉搜索树的实现,主要包括树的创建、插入、删除、查找、遍历、保存、载入。
binary_search_tree.hpp:
- #ifndef FBC_CPPBASE_TEST_BINARY_SEARCH_TREE_HPP_
- #define FBC_CPPBASE_TEST_BINARY_SEARCH_TREE_HPP_
-
- #include <vector>
- #include <fstream>
- #include <string>
-
- namespace binary_search_tree_ {
-
- typedef struct info {
- int id; // suppose id is unique
- std::string name;
- int age;
- std::string addr;
- } info;
-
- typedef struct node {
- info data;
- node* left = nullptr;
- node* right = nullptr;
- } node;
-
- class BinarySearchTree {
- public:
- BinarySearchTree() = default;
- ~BinarySearchTree() { DeleteTree(tree); }
-
- typedef std::tuple<int, int, std::string, int, std::string> row; // flag(-1: no node, 0: have a node), id, name, age, addr
-
- int Init(const std::vector<info>& infos); // create binary search tree
- bool Search(int id, info& data) const;
- int Insert(const info& data);
- int Delete(int id); // delete a node
- int Traversal(int type) const; // 0: pre-order, 1: in-order, 2: post-order, 3: level
- int GetMaxDepth() const; // get tree max depth
- int GetMinDepth() const; // get tree min depth
- int GetNodesCount() const; // get tree node count
- bool IsBinarySearchTree() const; // whether or not is a binary search tree
- //bool IsBinaryBalanceTree() const; // whether ot not is a binary balance tree
- int GetMinValue(info& data) const;
- int GetMaxValue(info& data) const;
- int SaveTree(const char* name) const; // tree write in txt file
- int LoadTree(const char* name);
-
- protected:
- void PreorderTraversal(const node* ptr) const;
- void InorderTraversal(const node* ptr) const;
- void PostorderTraversal(const node* ptr) const;
- void LevelTraversal(const node* ptr) const;
- void LevelTraversal(const node* ptr, int level) const;
- void DeleteTree(node* ptr);
- void Insert(node* ptr, const info& data);
- const node* Search(const node* ptr, int id) const;
- void IsBinarySearchTree(const node* ptr, bool is_bst) const;
- int GetNodesCount(const node* ptr) const;
- int GetMaxDepth(const node* ptr) const;
- int GetMinDepth(const node* ptr) const;
- //bool IsBinaryBalanceTree(const node* ptr) const;
- node* Delete(node* ptr, int id); // return new root
- node* GetMinValue(node* ptr);
- void NodeToRow(const node* ptr, std::vector<row>& rows, int pos) const;
- void RowToNode(node* ptr, const std::vector<row>& rows, int n, int pos);
-
- private:
- node* tree = nullptr;
- bool flag;
- };
-
- int test_binary_search_tree();
-
- } // namespace binary_search_tree_
-
- #endif // FBC_CPPBASE_TEST_BINARY_SEARCH_TREE_HPP_
binary_search_tree.cpp:
- #include "binary_search_tree.hpp"
- #include <set>
- #include <iostream>
- #include <limits>
- #include <tuple>
- #include <string>
- #include <sstream>
- #include <string.h>
- #include <algorithm>
-
- namespace binary_search_tree_ {
-
- int BinarySearchTree::Init(const std::vector<info>& infos)
- {
- std::vector<int> ids;
- for (const auto& info : infos) {
- ids.emplace_back(info.id);
- }
-
- std::set<int> id_set(ids.cbegin(), ids.cend());
- if (id_set.size() != ids.size()) {
- fprintf(stderr, "id must be unique\n");
- return -1;
- }
-
- for (const auto& info : infos) {
- Insert(info);
- }
-
- return 0;
- }
-
- bool BinarySearchTree::Search(int id, info& data) const
- {
- const node* root = tree;
- const node* tmp = Search(root, id);
- if (tmp) {
- data = tmp->data;
- return true;
- } else {
- return false;
- }
- }
-
- const node* BinarySearchTree::Search(const node* ptr, int id) const
- {
- if (ptr) {
- if (ptr->data.id == id) {
- return ptr;
- } else if (ptr->data.id > id) {
- return Search(ptr->left, id);
- } else {
- return Search(ptr->right, id);
- }
- } else {
- return nullptr;
- }
- }
-
- int BinarySearchTree::Insert(const info& data)
- {
- flag = true;
-
- if (tree) {
- Insert(tree, data);
- } else {
- tree = new node;
- tree->data = data;
- tree->left = nullptr;
- tree->right = nullptr;
- }
-
- return (int)flag;
- }
-
- void BinarySearchTree::Insert(node* ptr, const info& data)
- {
- if (ptr->data.id == data.id) {
- flag = false;
- return;
- }
-
- if (ptr->data.id < data.id) {
- if (ptr->right) {
- Insert(ptr->right, data);
- } else {
- ptr->right = new node;
- ptr->right->data = data;
- ptr->right->left = nullptr;
- ptr->right->right = nullptr;
- }
- } else {
- if (ptr->left) {
- Insert(ptr->left, data);
- } else {
- ptr->left = new node;
- ptr->left->data = data;
- ptr->left->left = nullptr;
- ptr->left->right = nullptr;
- }
- }
- }
-
- bool BinarySearchTree::IsBinarySearchTree() const
- {
- bool is_bst = true;
- const node* root = tree;
- IsBinarySearchTree(root, is_bst);
-
- return is_bst;
- }
-
- void BinarySearchTree::IsBinarySearchTree(const node* ptr, bool is_bst) const
- {
- static int last_data = std::numeric_limits<int>::min();
- if (!ptr) return;
-
- IsBinarySearchTree(ptr->left, is_bst);
-
- if (last_data < ptr->data.id) last_data = ptr->data.id;
- else {
- is_bst = false;
- return;
- }
-
- IsBinarySearchTree(ptr->right, is_bst);
- }
-
- int BinarySearchTree::Traversal(int type) const
- {
- if (!tree) {
- fprintf(stderr, "Error: it is an empty tree\n");
- return -1;
- }
-
- const node* root = tree;
- if (type == 0)
- PreorderTraversal(root);
- else if (type == 1)
- InorderTraversal(root);
- else if (type == 2)
- PostorderTraversal(root);
- else if (type == 3)
- LevelTraversal(root);
- else {
- fprintf(stderr, "Error: don't suppot traversal type, type only support: 0: pre-order, 1: in-order, 2: post-order\n");
- return -1;
- }
-
- return 0;
- }
-
- void BinarySearchTree::PreorderTraversal(const node* ptr) const
- {
- if (ptr) {
- fprintf(stdout, "Info: id: %d, name: %s, age: %d, addr: %s\n",
- ptr->data.id, ptr->data.name.c_str(), ptr->data.age, ptr->data.addr.c_str());
- PreorderTraversal(ptr->left);
- PreorderTraversal(ptr->right);
- }
- }
-
- void BinarySearchTree::InorderTraversal(const node* ptr) const
- {
- if (ptr) {
- InorderTraversal(ptr->left);
- fprintf(stdout, "Info: id: %d, name: %s, age: %d, addr: %s\n",
- ptr->data.id, ptr->data.name.c_str(), ptr->data.age, ptr->data.addr.c_str());
- InorderTraversal(ptr->right);
- }
- }
-
- void BinarySearchTree::PostorderTraversal(const node* ptr) const
- {
- if (ptr) {
- PostorderTraversal(ptr->left);
- PostorderTraversal(ptr->right);
- fprintf(stdout, "Info: id: %d, name: %s, age: %d, addr: %s\n",
- ptr->data.id, ptr->data.name.c_str(), ptr->data.age, ptr->data.addr.c_str());
- }
- }
-
- void BinarySearchTree::LevelTraversal(const node* ptr) const
- {
- int h = GetMaxDepth();
-
- for (int i = 1; i <= h; ++i)
- LevelTraversal(ptr, i);
- }
-
- void BinarySearchTree::LevelTraversal(const node* ptr, int level) const
- {
- if (!ptr) return;
-
- if (level == 1)
- fprintf(stdout, "Info: id: %d, name: %s, age: %d, addr: %s\n",
- ptr->data.id, ptr->data.name.c_str(), ptr->data.age, ptr->data.addr.c_str());
- else if (level > 1) {
- LevelTraversal(ptr->left, level-1);
- LevelTraversal(ptr->right, level-1);
- }
- }
-
- void BinarySearchTree::DeleteTree(node* ptr)
- {
- if (ptr) {
- DeleteTree(ptr->left);
- DeleteTree(ptr->right);
- delete ptr;
- }
- }
-
- int BinarySearchTree::GetNodesCount() const
- {
- const node* root = tree;
- return GetNodesCount(root);
- }
-
- int BinarySearchTree::GetNodesCount(const node* ptr) const
- {
- if (!ptr) return 0;
- else return GetNodesCount(ptr->left) + 1 + GetNodesCount(ptr->right);
- }
-
- int BinarySearchTree::GetMaxDepth() const
- {
- const node* root = tree;
- return GetMaxDepth(root);
- }
-
- int BinarySearchTree::GetMaxDepth(const node* ptr) const
- {
- if (!ptr) return 0;
-
- int left_depth = GetMaxDepth(ptr->left);
- int right_depth = GetMaxDepth(ptr->right);
-
- return std::max(left_depth, right_depth) + 1;
- }
-
- int BinarySearchTree::GetMinDepth() const
- {
- const node* root = tree;
- return GetMinDepth(root);
- }
-
- int BinarySearchTree::GetMinDepth(const node* ptr) const
- {
- if (!ptr) return 0;
-
- int left_depth = GetMaxDepth(ptr->left);
- int right_depth = GetMaxDepth(ptr->right);
-
- return std::min(left_depth, right_depth) + 1;
- }
-
- /*bool BinarySearchTree::IsBinaryBalanceTree() const
- {
- const node* root = tree;
- return IsBinaryBalanceTree(root);
- }
- bool BinarySearchTree::IsBinaryBalanceTree(const node* ptr) const
- {
- // TODO: code need to modify
- if (GetMaxDepth(ptr) - GetMinDepth(ptr) <= 1) return true;
- else return false;
- }*/
-
- int BinarySearchTree::GetMinValue(info& data) const
- {
- if (!tree) {
- fprintf(stderr, "Error: it is a empty tree\n");
- return -1;
- }
-
- const node* root = tree;
- while (root->left) root = root->left;
- data = root->data;
-
- return 0;
- }
-
- int BinarySearchTree::GetMaxValue(info& data) const
- {
- if (!tree) {
- fprintf(stderr, "Error: it is a empty tree\n");
- return -1;
- }
-
- const node* root = tree;
- while (root->right) root = root->right;
- data = root->data;
-
- return 0;
- }
-
- int BinarySearchTree::Delete(int id)
- {
- if (!tree) {
- fprintf(stderr, "Error: it is a empty tree\n");
- return -1;
- }
-
- const node* root = tree;
- const node* ret = Search(root, id);
- if (!ret) {
- fprintf(stdout, "Warning: this id don't exist in the tree: %d", id);
- return 0;
- }
-
- tree = Delete(tree, id);
-
- return 0;
- }
-
- node* BinarySearchTree::GetMinValue(node* ptr)
- {
- node* tmp = ptr;
- while (tmp->left) tmp = tmp->left;
-
- return tmp;
- }
-
- node* BinarySearchTree::Delete(node* ptr, int id)
- {
- if (!ptr) return ptr;
-
- if (id < ptr->data.id)
- ptr->left = Delete(ptr->left, id);
- else if (id > ptr->data.id)
- ptr->right = Delete(ptr->right, id);
- else {
- if (!ptr->left) {
- node* tmp = ptr->right;
- delete ptr;
- return tmp;
- } else if (!ptr->right) {
- node* tmp = ptr->left;
- delete ptr;
- return tmp;
- }
-
- node* tmp = GetMinValue(ptr->right);
- ptr->data = tmp->data;
- ptr->right = Delete(ptr->right, tmp->data.id);
- }
-
- return ptr;
- }
-
- int BinarySearchTree::SaveTree(const char* name) const
- {
- std::ofstream file(name, std::ios::out);
- if (!file.is_open()) {
- fprintf(stderr, "Error: open file fail: %s\n", name);
- return -1;
- }
-
- const node* root = tree;
- int max_depth = GetMaxDepth(root);
- int max_nodes = (1 << max_depth) -1;
- root = tree;
- int nodes_count = GetNodesCount(root);
- //fprintf(stdout, "max_depth: %d, max nodes: %d\n", max_depth, max_nodes);
- file<<nodes_count<<","<<max_depth<<std::endl;
- std::vector<row> vec(max_nodes, std::make_tuple(-1, -1, " ", -1, " "));
- root = tree;
- NodeToRow(root, vec, 0);
-
- for (const auto& v : vec) {
- file << std::get<0>(v)<<","<<std::get<1>(v)<<","<<std::get<2>(v)<<","<<std::get<3>(v)<<","<<std::get<4>(v)<<std::endl;
- }
-
- file.close();
- return 0;
- }
-
- void BinarySearchTree::NodeToRow(const node* ptr, std::vector<row>& rows, int pos) const
- {
- if (!ptr) return;
-
- rows[pos] = std::make_tuple(0, ptr->data.id, ptr->data.name, ptr->data.age, ptr->data.addr);
-
- if (ptr->left) NodeToRow(ptr->left, rows, 2 * pos + 1);
- if (ptr->right) NodeToRow(ptr->right, rows, 2 * pos + 2);
- }
-
- int BinarySearchTree::LoadTree(const char* name)
- {
- std::ifstream file(name, std::ios::in);
- if (!file.is_open()) {
- fprintf(stderr, "Error: open file fail: %s\n", name);
- return -1;
- }
-
- std::string line, cell;
- std::getline(file, line);
- std::stringstream line_stream(line);
- std::vector<int> vec;
- while (std::getline(line_stream, cell, ',')) {
- vec.emplace_back(std::stoi(cell));
- }
- if (vec.size() != 2) {
- fprintf(stderr, "Error: parse txt file fail\n");
- return -1;
- }
- fprintf(stdout, "nodes count: %d, max depth: %d\n", vec[0], vec[1]);
-
- int max_nodes = (1 << vec[1]) - 1;
- std::vector<row> rows;
-
- while (std::getline(file, line)) {
- std::stringstream line_stream2(line);
- std::vector<std::string> strs;
- while (std::getline(line_stream2, cell, ',')) {
- strs.emplace_back(cell);
- }
- if (strs.size() != 5) {
- fprintf(stderr, "Error: parse line fail\n");
- return -1;
- }
-
- row tmp = std::make_tuple(std::stoi(strs[0]), std::stoi(strs[1]), strs[2], std::stoi(strs[3]), strs[4]);
- rows.emplace_back(tmp);
- }
-
- if (rows.size() != max_nodes || std::get<0>(rows[0]) == -1) {
- fprintf(stderr, "Error: parse txt file line fail\n");
- return -1;
- }
-
- node* root = new node;
- root->data = {std::get<1>(rows[0]), std::get<2>(rows[0]), std::get<3>(rows[0]), std::get<4>(rows[0])};
- root->left = nullptr;
- root->right = nullptr;
- tree = root;
-
- RowToNode(root, rows, max_nodes, 0);
-
- file.close();
- return 0;
- }
-
- void BinarySearchTree::RowToNode(node* ptr, const std::vector<row>& rows, int n, int pos)
- {
- if (!ptr || n == 0) return;
-
- int new_pos = 2 * pos + 1;
- if (new_pos < n && std::get<0>(rows[new_pos]) != -1) {
- ptr->left = new node;
- ptr->left->data = {std::get<1>(rows[new_pos]), std::get<2>(rows[new_pos]), std::get<3>(rows[new_pos]), std::get<4>(rows[new_pos])};
- ptr->left->left = nullptr;
- ptr->left->right = nullptr;
-
- RowToNode(ptr->left, rows, n, new_pos);
- }
-
- new_pos = 2 * pos + 2;
- if (new_pos < n && std::get<0>(rows[new_pos]) != -1) {
- ptr->right = new node;
- ptr->right->data = {std::get<1>(rows[new_pos]), std::get<2>(rows[new_pos]), std::get<3>(rows[new_pos]), std::get<4>(rows[new_pos])};
- ptr->right->left = nullptr;
- ptr->right->right = nullptr;
-
- RowToNode(ptr->right, rows, n, new_pos);
- }
- }
-
-
- int test_binary_search_tree()
- {
- fprintf(stdout, "create binary search tree:\n");
- std::vector<info> infos{{1004, "Tom", 8, "Beijing"}, {1005, "Jack", 9, "Tianjin"}, {1003, "Mark", 6, "Hebei"}, {1009, "Lisa", 11, "Beijiing"}, {1007, "Piter", 4, "Hebei"}, {1001, "Viner", 6, "Beijing"}};
-
- BinarySearchTree bstree;
- bstree.Init(infos);
-
- fprintf(stdout, "\ninsert operation:\n");
- std::vector<info> infos2{{1007, "xxx", 11, "yyy"}, {1008, "Lorena", 22, "Hebie"}, {1002, "Eillen", 14, "Shanxi"}};
- for (const auto& info : infos2) {
- int flag = bstree.Insert(info);
- if (flag) fprintf(stdout, "insert success\n");
- else fprintf(stdout, "Warning: id %d already exists, no need to insert\n", info.id);
- }
-
- fprintf(stdout, "\ntraversal operation:\n");
- fprintf(stdout, "pre-order traversal:\n");
- bstree.Traversal(0);
- fprintf(stdout, "in-order traversal:\n");
- bstree.Traversal(1);
- fprintf(stdout, "post-order traversal:\n");
- bstree.Traversal(2);
- fprintf(stdout, "level traversal:\n");
- bstree.Traversal(3);
-
- fprintf(stdout, "\nsearch operation:\n");
- std::vector<int> ids {1009, 2000};
- for (auto id : ids) {
- info ret;
- bool flag = bstree.Search(id, ret);
- if (flag)
- fprintf(stdout, "found: info: %d, %s, %d, %s\n", ret.id, ret.name.c_str(), ret.age, ret.addr.c_str());
- else
- fprintf(stdout, "no find: no id info: %d\n", id);
- }
-
- fprintf(stdout, "\nwhether or not is a binary search tree operation:\n");
- bool flag2 = bstree.IsBinarySearchTree();
- if (flag2) fprintf(stdout, "it is a binary search tree\n");
- else fprintf(stdout, "it is not a binary search tree\n");
-
- fprintf(stdout, "\ncalculate node count operation:\n");
- int count = bstree.GetNodesCount();
- fprintf(stdout, "tree node count: %d\n", count);
-
- fprintf(stdout, "\ncalculate tree depth operation:\n");
- int max_depth = bstree.GetMaxDepth();
- int min_depth = bstree.GetMinDepth();
- fprintf(stdout, "tree max depth: %d, min depth: %d\n", max_depth, min_depth);
-
- /*fprintf(stdout, "\nwhether or not is a binary balance tree operation:\n");
- flag2 = bstree.IsBinaryBalanceTree();
- if (flag2) fprintf(stdout, "it is a binary balance tree\n");
- else fprintf(stdout, "it is not a binary balance tree\n");*/
-
- fprintf(stdout, "\nget min and max value(id):\n");
- info value;
- bstree.GetMinValue(value);
- fprintf(stdout, "tree min value: id: %d\n", value.id);
- bstree.GetMaxValue(value);
- fprintf(stdout, "tree max value: id: %d\n", value.id);
-
- fprintf(stdout, "\ndelete node operation:\n");
- bstree.Delete(1005);
- bstree.Traversal(1);
-
- fprintf(stdout, "\nsave tree operation:\n");
- #ifdef _MSC_VER
- char* name = "E:/GitCode/Messy_Test/testdata/binary_search_tree.model";
- #else
- char* name = "testdata/binary_search_tree.model";
- #endif
- bstree.SaveTree(name);
-
- fprintf(stdout, "\nload tree operation:\n");
- BinarySearchTree bstree2;
- bstree2.LoadTree(name);
- int count2 = bstree2.GetNodesCount();
- int max_depth2 = bstree2.GetMaxDepth();
- int min_depth2 = bstree2.GetMinDepth();
- fprintf(stdout, "tree node count: %d, tree max depth: %d, min depth: %d\n", count2, max_depth2, min_depth2);
- bstree2.Traversal(1);
-
- return 0;
- }
-
- } // namespace binary_search_tree_
支持Linux和Windows直接编译,Windows通过VS,linux下执行prj/linux_cmake_CppBaseTest/build.sh脚本。执行结果如下:
保存的binary_search_tree.model结果如下:
7,4 0,1004,Tom,8,Beijing 0,1003,Mark,6,Hebei 0,1009,Lisa,11,Beijiing 0,1001,Viner,6,Beijing -1,-1, ,-1, 0,1007,Piter,4,Hebei -1,-1, ,-1, -1,-1, ,-1, 0,1002,Eillen,14,Shanxi -1,-1, ,-1, -1,-1, ,-1, -1,-1, ,-1, 0,1008,Lorena,22,Hebie -1,-1, ,-1, -1,-1, ,-1,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。