当前位置:   article > 正文

C++——一种特殊的二叉搜索树之红黑树_c++红黑二叉树

c++红黑二叉树

1 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

2 红黑树的性质

性质1️⃣:每个结点不是红色就是黑色
性质2️⃣:根节点是黑色的
性质3️⃣: 如果一个节点是红色的,则它的两个孩子结点是黑色的,也就是说没有连续的红节点(仅此而已,这里没说如果一个结点是黑色的孩子必须是红色的)。
性质4️⃣:对于每个结点,从该结点到其所有后代叶结点的简单路径上(这个简单路径包含NIL这个空结点,这里的黑色结点数要算上NIL),包含相同数目的黑色结点
性质5️⃣:每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。
在这里插入图片描述

为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?
因为一颗红黑树的所有路径上都有两个黑色结点,那么
最短的情况:全黑,就是把根节点算上有两个黑色结点即可。
最长的情况:一黑一红间隔开来,总共也是两个黑结点,一共最长有两黑两红四个结点。
在这里插入图片描述

3 红黑树节点的定义

// 节点的颜色
enum Colour//颜色用枚举常量来标识
{
	RED,
	BLACK,
};
// 红黑树节点的定义
template<class K, class V>
struct RBTreeNode//
{
	pair<K, V> _kv;// 节点的值域键值对
	RBTreeNode<K, V>* _left;// 节点的左孩子
	RBTreeNode<K, V>* _right;// 节点的右孩子
	RBTreeNode<K, V>* _parent;// 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
	
	Colour _col;// 节点的颜色

	RBTreeNode(const pair<K, V>& kv)//结点的构造函数
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)//默认结点是红色的
	{}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

在节点的定义中,为什么要将节点的默认颜色给成红色的?
因为随便插入一个结点就是黑色的话,那么本条路径上的黑色结点就增加了一个,那么就直接违反了性质4;随便插入一个红节点,有可能违反性质3,也有可能不违反,违反的话,后续的插入操作会进行处理;那么这里就选那个损失最小的那个方案,将默认颜色给成红色的。

4 红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点

  2. 检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整。

但当新插入节点的双亲节点颜色为红色时,就违反了性质3不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:(约定:cur为当前新插入的节点,p为父节点,g为祖父节点,u为叔叔节点)

情况一: cur为红,p为红,g为黑,u存在且为红。

解决方案:将p,u改为黑,g改为红(为了防止凭空多出一个黑节点),
接下来如果g就已经是根了,那么把g再变黑就可以了;
如果g就不是根,把g当成cur,继续向上调整。

在这里插入图片描述

在这里插入图片描述

情况二: cur为红,p为红,g为黑(不存在连续的红结点),u不存在/u存在且为黑(仅仅单旋)

解决方案:(旋转+变色)
p为g的左孩子,cur为p的左孩子,则对g进行右单旋转,p变黑,g变红
在这里插入图片描述
相反,
p为g的右孩子,cur为p的右孩子,则对g进行左单旋转,变色的时候和上面一样,p变黑,g变红。

我在这里学习的时候遇到一个疑问。情况二当u不存在的时候,直接把p变黑,g变红,需要向上处理就在往上处理,g就是根的时候就把g变黑。这里对于情况二是为了统一处理起来方便吗?能像我说的这样处理吗?
在这里插入图片描述

答案是不可以的,因为红黑树的路径上黑色结点的数量包含空结点,P变黑g变红,那g的右边就只有一个黑结点,与g左边每条路径上都有两个黑色结点的数量不同,所以不能这样处理。

u的情况有两种:
1.如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点则cur和p一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个数相同。
2.如果u节点存在,则其一定是黑色的,那么cur节点原来的颜色一定是黑色的,下图看到cur是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成红色。
在这里插入图片描述

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(旋转方法与情况二不同——双旋)

解决方案:
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,变成情况2,然后再对g进行右旋+变色
相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,变成情况2,然后再对g进行左旋+变色
在这里插入图片描述
总结:插入新节点之后怎么调整关键就看u叔叔结点。 对于情况二和情况三我们这里的处理方法直接一步到位,直接让cur为根节点的子树完全符合红黑树的特性,不论cur为根、还是一颗子树,都无需再进行处理。

插入的三种情况代码演示及详解注释:

while (parent && parent->_col == RED)//如果双亲结点存在且为红
{
	Node* grandfater = parent->_parent;//祖父结点
	if (parent == grandfater->_left)//如果双亲结点是祖父结点的左
	{
		Node* uncle = grandfater->_right;//那么叔叔结点就是祖父结点的右
		// 情况一  uncle存在且为红
		if (uncle && uncle->_col == RED)
		{
			//双亲结点和叔叔结点变为黑、祖父节点变为红
			parent->_col = uncle->_col = BLACK;//
			grandfater->_col = RED;//
			//往上走继续更新
			cur = grandfater;
			parent = cur->_parent;
		}
		else//uncle不存在/存在且为黑
		{
			if (cur == parent->_left)
			{
				//情况二的让祖父右单旋+变色
				RotateR(grandfater);
				parent->_col = BLACK;
				grandfater->_col = RED;
			}
			else
			{
				// 情况三的左右双旋+变色
				RotateL(parent);
				RotateR(grandfater);
				cur->_col = BLACK;
				grandfater->_col = RED;
			}
	//对于情况二和情况三的处理直接一步到位,直接让cur为根节点的子树完全符合红黑树的特性,
	//不论cur为根还是一颗子树,都无需再进行处理,所以直接用break
			break;
		}
	}
	else //如果双亲结点是祖父结点的右,情况二和情况三的旋转方向需要和上面的相反
	{
		Node* uncle = grandfater->_left;//那么叔叔结点就是祖父的左
		// 情况一:uncle存在且为红和上面的情况一代码是一样的
		if (uncle && uncle->_col == RED)
		{
			parent->_col = uncle->_col = BLACK;
			grandfater->_col = RED;

			cur = grandfater;
			parent = cur->_parent;
		}
		else
		{//情况二:让祖父左单旋+变色
			//   g                                p
			//      p   --------------->      g      c
			//         c
			if (cur == parent->_right)
			{
				RotateL(grandfater);
				parent->_col = BLACK;
				grandfater->_col = RED;
			}
			else//情况三:右左双旋+变色
			{
				//   g                    c             
				//      p----->      g        p
				//   c
				RotateR(parent);
				RotateL(grandfater);
				cur->_col = BLACK;
				grandfater->_col = RED;
			}
	//对于情况二和情况三的处理直接一步到位,直接让cur为根节点的子树完全符合红黑树的特性,
	//不论cur为根还是一颗子树,都无需再进行处理,所以直接用break
			break;
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77

动态效果演示:

  • 以升序插入构建红黑树请添加图片描述
  • 以降序插入构建红黑树
    请添加图片描述
  • 随机插入构建红黑树
    请添加图片描述

5 如何验证一棵树是否是红黑树

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
void Inorder()
{
	_Inorder(_root);
}

void _Inorder(Node* root)
{
	if (root == nullptr)
		return;

	_Inorder(root->_left);
	cout << root->_kv.first << ":" << root->_kv.second << endl;
	_Inorder(root->_right);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  1. 检测其是否满足红黑树的性质

对于性质1不是黑色就是红色枚举常量就可以保证。
验证代码:

bool Check(Node* root, int blackNum, const int ref)
{
	//验证性质4
	if (root == nullptr)
	{
		//cout << blackNum << endl;
		if (blackNum != ref)
		{
			cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
			return false;
		}
		return true;
	}
	//验证性质3
	if (root->_col == RED && root->_parent->_col == RED)
	{
		cout << "违反规则:出现连续红色节点" << endl;
		return false;
	}
	//计算黑色结点的个数
	if (root->_col == BLACK)
	{
		++blackNum;
	}

	return Check(root->_left, blackNum, ref)
		&& Check(root->_right, blackNum, ref);
}

bool IsBalance()
{
	if (_root == nullptr)
	{
		return true;
	}

	if (_root->_col != BLACK)//验证性质2
	{
		return false;
	}
	
	//在左边的路径上一直往左走寻找黑色结点的个数作为基准值
	//要让其满足性质4
	int ref = 0;
	Node* left = _root;
	while (left)
	{
		if (left->_col == BLACK)
		{
			++ref;
		}
		left = left->_left;
	}
	//用基准值传参
	return Check(_root, 0, ref);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

6 红黑树的删除

红黑树的删除不做讲解,有兴趣的老铁可参考:《算法导论》或者《STL源码剖析》一篇比较好的文章

7 红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

8 红黑树的应用

  1. C++ STL库 – map/set、mutil_map/mutil_set
  2. Java 库
  3. linux内核
  4. 其他一些库

9 红黑树模拟实现STL中的map与set

下面内容有兴趣的老铁可以看一下。

红黑树的迭代器

迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以下问题:STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?
能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行–操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:
在这里插入图片描述

operator++()与operator–()

在这里插入图片描述
operator++()与operator–()的模拟实现代码及详解注释:

template<class T, class Ref, class Ptr>
struct __RBTreeIterator//整个迭代器类
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	typedef __RBTreeIterator<T, T&, T*> iterator;

	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	// 普通迭代器的时候,他是拷贝构造
	// const迭代器的时候,他是构造,支持用普通迭代器构造const迭代器
	__RBTreeIterator(const iterator& s)
		:_node(s._node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
		//对于_node里的date如果一但能用箭头就一定是结构体类型的,
		//此时返回这个结构体数据类型的地址就可以
	}
	

	//中序遍历顺序  左 根 右
	Self& operator++()
	{
		if (_node->_right)
			//对于任何一个节点,把这个结点视为它自己这个子树的根节点,
			//此时已经访问完左子树,才能访问到他这里,
			//那下一个结点就看右子树的最左结点就可以
		{
			Node* min = _node->_right;
			while (min->_left)
			{
				min = min->_left;
			}

			_node = min;
		}
		else
			//如果右子树为空,就看双亲结点,
			//如果当前结点是双亲结点的左孩子,那么才会访问这个双亲结点(想一下中序遍历的顺序);
			//如果当前结点是双亲结点的右孩子,就是已经访问过这个双亲结点了,
			//那么需要再循环往上找双亲结点,直到找见双亲节点是cur结点的左孩子为止。
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}


	//中序遍历顺序  右 根 左
	Self& operator--()
	{	//和++的思路相反即可
		//对于任何一个节点,把这个结点视为它自己这个子树的根节点,
		//此时已经访问完右子树,才能访问到他这里,
		//那下一个结点就看左子树的最右结点就可以
		if (_node->_left)
		{
			Node* max = _node->_left;
			while (max->_right)
			{
				max = max->_right;
			}
			_node = max;
		}
		else
			//如果左子树为空,就看双亲结点,
			//如果当前结点是双亲结点的右孩子,那么才会访问这个双亲结点(想一下中序遍历的逆序);
			//如果当前结点是双亲结点的左孩子,就是已经访问过这个双亲结点了,
			//那么需要再循环往上找双亲结点,直到找见双亲节点是cur结点的右孩子为止。
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			_node = parent;
		}

		return *this;
	}


	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}

};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115

对红黑树进行改造

下面的内容需要注意:
1.在实现迭代器类的时候,不论是map还是set都是需要实现insert的,返回一个pair键值对,需要用普通迭代器来拷贝构造一个const迭代器,正常来讲我们肯定认为是不可以的,但是实际我们使用所有STL容器的一个普通迭代器给const迭代器赋值的时候,发现都是可以赋值的,那它们是怎么实现的呢?拿红黑树的迭代器来模拟一下,具体实现如下:

// 普通迭代器的时候,他是拷贝构造
	// const迭代器的时候,他是构造,支持用普通迭代器构造const迭代器
__RBTreeIterator(const iterator& s)//神来之笔拷贝构造
	:_node(s._node)
{}
  • 1
  • 2
  • 3
  • 4
  • 5

2.在比较大小时,对于set比的是K,而对于map比较的是K,V键值对的K,所以这里运用仿函数,把map中的K提取出来。

enum Colour//两种颜色,使用枚举类型
{
	RED,
	BLACK,
};

template<class T>
struct RBTreeNode//红黑树的结点类
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)//默认给红色
	{}
};

template<class T, class Ref, class Ptr>
struct __RBTreeIterator//红黑树的迭代器类
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;//
	//Ref对应 T&或者const T&  ;Ptr对应T*或者const T*
	typedef __RBTreeIterator<T, T&, T*> iterator;
	//¥¥¥¥¥全篇精华,为了让普通迭代器可以给const迭代器赋值(拷贝构造)¥¥¥¥¥¥¥¥¥¥¥

	Node* _node;

	__RBTreeIterator(Node* node)//构造
		:_node(node)
	{}

	// 普通迭代器的时候,他是拷贝构造
	// const迭代器的时候,他是构造,支持用普通迭代器构造const迭代器
	__RBTreeIterator(const iterator& s)//神来之笔拷贝构造
		:_node(s._node)
	{}

	Ref operator*()//*运算符重载
	{
		return _node->_data;
	}

	Ptr operator->()//->运算符重载
	{
		return &_node->_data;
		//对于_node里的date如果一但能用箭头就一定是结构体类型的,此时返回这个结构体数据类型的地址就可以
	}
	

	//中序遍历顺序  左 根 右
	Self& operator++()
	{
		//略
	}


	//中序遍历顺序  右 根 左
	Self& operator--()
	{	
		//略
	}

	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}
};


// map->RBTree<K, pair<const K, V>, MapKeyOfT> _t;
// set->RBTree<K, K, SetKeyOfT> _t;
template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __RBTreeIterator<T, T&, T*> iterator;
	typedef __RBTreeIterator<T, const T&, const T*> const_iterator;


	iterator begin()//begin就是最左(小)结点
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return iterator(left);
	}

	iterator end()//这里就暂时给了一个nullptr的end()迭代器
	{
		return iterator(nullptr);
	}


	const_iterator begin() const
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return const_iterator(left);
	}

	const_iterator end() const
	{
		return const_iterator(nullptr);
	}

	pair<iterator, bool> Insert(const T& data)//
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(iterator(_root), true);
		}

		KeyOfT kot;//仿函数的应用
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))//仿函数的应用
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))//仿函数的应用
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), false);
			}
		}

		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				// 情况一  uncle存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						// 情况二
						RotateR(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else
					{
						// 情况三
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
			else // (parent == grandfater->_right)
			{
				Node* uncle = grandfater->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//   g                
					//      p
					//         c
					if (cur == parent->_right)
					{
						RotateL(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else
					{
						//   g                
						//      p
						//   c
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return make_pair(iterator(newnode), true);
	}

	void RotateL(Node* parent)//左旋
	{
		//略
	}

	void RotateR(Node* parent)//右旋
	{
		//略
	}

	void Inorder()//中序遍历
	{
		_Inorder(_root);
	}

	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}

	bool Check(Node* root, int blackNum, const int ref)//验证一颗树是否是红黑树
	{
		//略
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col != BLACK)
		{
			return false;
		}

		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				++ref;
			}

			left = left->_left;
		}

		return Check(_root, 0, ref);
	}

private:
	Node* _root = nullptr;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309

map的模拟实现

map的底层结构就是红黑树,因此在map中直接封装一棵红黑树,然后将其接口包装下即可。

template<class K, class V>
class map
{
	struct MapKeyOfT//仿函数
	{
		const K& operator()(const pair<const K, V>& kv)
		{
			return kv.first;
		}
	};
public:
	typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
	typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;


	iterator begin()
	{
		return _t.begin();
	}

	iterator end()
	{
		return _t.end();
	}

	const_iterator begin() const
	{
		return _t.begin();
	}

	const_iterator end() const
	{
		return _t.end();
	}

	pair<iterator, bool> insert(const pair<const K, V>& kv)
	{
		return _t.Insert(kv);
	}

	V& operator[](const K& key)
	{
		pair<iterator, bool> ret = insert(make_pair(key, V()));
		return ret.first->second;
	}
private:
	RBTree<K, pair<const K, V>, MapKeyOfT> _t;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

set的模拟实现

set的底层为红黑树,因此只需在set内部封装一棵红黑树,即可将该容器实现出来(具体实现可参考map)。

template<class K>
class set
{
	struct SetKeyOfT
	{
		const K& operator()(const K& key)
		{
			return key;
		}
	};
public:
	typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
	typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;

	iterator begin() const
	{
		return _t.begin();
	}

	iterator end() const
	{
		return _t.end();
	}

	
	pair<iterator, bool> insert(const K& key)
	{
		pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);
		return pair<iterator, bool>(ret.first, ret.second);
	}
private:
	RBTree<K, K, SetKeyOfT> _t;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

完整代码链接
⛷️⛷️⛷️⛷️⛷️

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/246227
推荐阅读
相关标签
  

闽ICP备14008679号