赞
踩
本系列深入Pytorch官方Faster R-CNN源代码,博主会尽可能详尽地解释每一处代码,如果对你有帮助可以点点关注点点赞,有问题在评论区指出,博主会尽可能地解答。
Faster R-CNN论文链接
Pytorch官方Faster R-CNN的代码文档链接。
Pytorch官方使用的示例代码如下:
import torch import torchvision model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # For training images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4) boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4] labels = torch.randint(1, 91, (4, 11)) images = list(image for image in images) targets = [] for i in range(len(images)): d = {'boxes': boxes[i], 'labels': labels[i]} targets.append(d) output = model(images, targets) # For inference model.eval() x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] predictions = model(x) # optionally, if you want to export the model to ONNX: torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
下面主要就示例代码进行详细说明。
首先,初始化 Faster R-CNN 模型。
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
可以看出,这里使用的是主干网络 Resnet-50-FPN 的 Faster R-CNN。接下来 Debug 进内部代码。
def fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=3, **kwargs): """ Constructs a Faster R-CNN model with a ResNet-50-FPN backbone. 构建一个主干网络为 ResNet-50-FPN 的 Faster R-CNN 模型。 The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. 模型的输入应该为一个由tensors组成的列表,每个tensor的形状为[C,H,W],对于每一个图像的元素值都应该在[0,1]的范围内,不同的图像有着不同的尺寸。 The behavior of the model changes depending if it is in training or evaluation mode. 模型有训练与评估两种模式,模型的表现取决于模型所处的模式。 During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with values of ``x`` between ``0`` and ``W`` and values of ``y`` between ``0`` and ``H`` - labels (``Int64Tensor[N]``): the class label for each ground-truth box 在训练过程中,模型需要输入图像的tensor,以及目标(字典组成的列表),其包含: - 边框(FloatTensor[N,4]):真实框为[x1,y1,x2,y2]的形式,x 的值在 0~W 之间,y 的值在 0-H 之间。 - 标签(Int64Tensor[N]):每个真实框的类别标签。 The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN. 在训练期间,模型返回一个 ”Dict[Tensor]“,包含 RPN 与 R-CNN 阶段的分类与回归损失。 During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with values of ``x`` between ``0`` and ``W`` and values of ``y`` between ``0`` and ``H`` - labels (``Int64Tensor[N]``): the predicted labels for each image - scores (``Tensor[N]``): the scores or each prediction 在推理过程中,模型仅需要输入图像的tensor,然后返回经过后处理的预测结果以 "List[Dict[Tensor]]" 的形式,对于每一个输入图像,其 "Dict" 域如下: - 边框(FloatTensor[N,4]):预测框为[x1,y1,x2,y2]的形式,x 的值在 0~W 之间,y 的值在 0~H 之间。 - 标签(Int64Tensor[N]):每个图像的预测标签。 - 分数(Tensor[N]):每个预测的分数。 Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Faster R—CNN 可以被导出为一个固定批大小域固定尺寸输入图像的 ONNX 格式。 Arguments: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet num_classes (int): number of output classes of the model (including the background) trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. 参数: pretrianed(bool):如果为真,返回一个在 COCO train2017 上的预训练模型。 progress(bool):如果为真,将下载进度条展示在屏幕。 pretrained_backbone(bool):如果为真,返回一个在 Imagenet 上的主干网络预训练模型。 num_classes(int):模型输出的种类数量(包括背景)。 trainable_backbone_layers(int):从最后一个块开始可训练 ResNet 层的数量(未被冻结)。合法的值在 0~5 之间,5 意味着所有主干网络的层都是可训练的。 """ # 使用 assert 判断 trainable_backbone_layers 的值是否合法 assert trainable_backbone_layers <= 5 and trainable_backbone_layers >= 0 # dont freeze any layers if pretrained model or backbone is not used # 如果预训练模型或者预训练主干网络未被使用,不要冻结任何层。 if not (pretrained or pretrained_backbone): trainable_backbone_layers = 5 if pretrained: # no need to download the backbone if pretrained is set # 如果预训练模型被使用,就不需要下载预训练主干网络 pretrained_backbone = False # 获取 ResNet_FPN 主干网络 backbone = resnet_fpn_backbone('resnet50', pretrained_backbone, trainable_layers=trainable_backbone_layers) # 获取 Faster R-CNN 模型 model = FasterRCNN(backbone, num_classes, **kwargs) if pretrained: # 如果使用预训练模型,就下载相关的预训练模型配置 state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'], progress=progress) # 加载模型配置到模型中 model.load_state_dict(state_dict) return model # 返回模型
Debug 进获取 ResNet_FPN 主干网络对应代码。
def resnet_fpn_backbone( backbone_name, pretrained, norm_layer=misc_nn_ops.FrozenBatchNorm2d, trainable_layers=3, returned_layers=None, extra_blocks=None ): """ Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone. 构建一个在顶端加入FPN的ResNet主干网络。冻结主干网络中指定数量的层。 Examples:: >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3) >>> # get some dummy image >>> x = torch.rand(1,3,64,64) >>> # compute the output >>> output = backbone(x) >>> print([(k, v.shape) for k, v in output.items()]) >>> # returns >>> [('0', torch.Size([1, 256, 16, 16])), >>> ('1', torch.Size([1, 256, 8, 8])), >>> ('2', torch.Size([1, 256, 4, 4])), >>> ('3', torch.Size([1, 256, 2, 2])), >>> ('pool', torch.Size([1, 256, 1, 1]))] Arguments: backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2' norm_layer (torchvision.ops): it is recommended to use the default value. For details visit: (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267) pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. 参数: backbone_name (string):resnet 架构。可能的值为 'ResNet','resnet18','resnet34','resnet50','resnet101','resnet152', 'resnext50_32x4d','resnet101_32x8d','wide_resnet50_2','wide_resnet101_2' norm_layer (torchivision.ops):建议使用默认值。相关细节请访问: (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267) pretrained (bool):如果为真,返回一个在 Imagenet 上的预训练主干网络模型 trainable_layers (int):从最后一个块开始可训练 ResNet 层的数量(未被冻结)。合法的值在 0~5 之间,5 意味着所有主干网络的层都是可训练的。 """ backbone = resnet.__dict__[backbone_name]( pretrained=pretrained, norm_layer=norm_layer) # 获取resnet-50主干网络 # select layers that wont be frozen # 选择被冻结的层(不参与训练) assert trainable_layers <= 5 and trainable_layers >= 0 layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers] # freeze layers only if pretrained backbone is used # 仅仅当预训练主干网络被使用才冻结层 for name, parameter in backbone.named_parameters(): if all([not name.startswith(layer) for layer in layers_to_train]): parameter.requires_grad_(False) if extra_blocks is None: extra_blocks = LastLevelMaxPool() if returned_layers is None: returned_layers = [1, 2, 3, 4] assert min(returned_layers) > 0 and max(returned_layers) < 5 return_layers = {f'layer{k}': str(v) for v, k in enumerate(returned_layers)} in_channels_stage2 = backbone.inplanes // 8 in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers] out_channels = 256 return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
Debug进获取 ResNet-50 主干网络的代码。
class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def forward(self, x): return self._forward_impl(x)
ResNet-50 的网络结构如下图所示。
ResNet-50 采用了 BottleNeck 结构,其比 BasicNeck 更省参数。代码如下:
class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out
最后我们获得到 ResNet-50 的网络结构:
ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): FrozenBatchNorm2d(64) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): Bottleneck( (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(64) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(64) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(256) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): FrozenBatchNorm2d(256) ) ) (1): Bottleneck( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(64) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(64) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(256) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(64) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(64) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(256) (relu): ReLU(inplace=True) ) ) (layer2): Sequential( (0): Bottleneck( (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(128) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(128) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(512) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): FrozenBatchNorm2d(512) ) ) (1): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(128) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(128) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(512) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(128) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(128) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(512) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(128) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(128) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(512) (relu): ReLU(inplace=True) ) ) (layer3): Sequential( (0): Bottleneck( (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(256) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(256) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(1024) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): FrozenBatchNorm2d(1024) ) ) (1): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(256) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(256) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(1024) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(256) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(256) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(1024) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(256) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(256) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(1024) (relu): ReLU(inplace=True) ) (4): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(256) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(256) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(1024) (relu): ReLU(inplace=True) ) (5): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(256) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(256) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(1024) (relu): ReLU(inplace=True) ) ) (layer4): Sequential( (0): Bottleneck( (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(512) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(512) (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(2048) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): FrozenBatchNorm2d(2048) ) ) (1): Bottleneck( (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(512) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(512) (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(2048) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): FrozenBatchNorm2d(512) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): FrozenBatchNorm2d(512) (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): FrozenBatchNorm2d(2048) (relu): ReLU(inplace=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=2048, out_features=1000, bias=True) )
之后还加如了FPN。
如上图所示,FPN 可以建立各种尺度都是强语义的特征金字塔,具体原理可以看这篇博客。FPN 在这里获取 ResNet-50 每个阶段提取的特征图加上最大池化最后一层特征图共五层特征图。其代码如下:
def forward(self, x: Dict[str, Tensor]) -> Dict[str, Tensor]: """ Computes the FPN for a set of feature maps. Arguments: x (OrderedDict[Tensor]): feature maps for each feature level. Returns: results (OrderedDict[Tensor]): feature maps after FPN layers. They are ordered from highest resolution first. """ # unpack OrderedDict into two lists for easier handling names = list(x.keys()) x = list(x.values()) last_inner = self.get_result_from_inner_blocks(x[-1], -1) results = [] results.append(self.get_result_from_layer_blocks(last_inner, -1)) for idx in range(len(x) - 2, -1, -1): inner_lateral = self.get_result_from_inner_blocks(x[idx], idx) # 1x1 卷积减少通道数量至256 feat_shape = inner_lateral.shape[-2:] inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest") # 上采样 last_inner = inner_lateral + inner_top_down # 横向连接 results.insert(0, self.get_result_from_layer_blocks(last_inner, idx)) # 3x3 卷积消除混叠效应 if self.extra_blocks is not None: results, names = self.extra_blocks(results, x, names) # 最大池化获得第五层特征图 # make it back an OrderedDict out = OrderedDict([(k, v) for k, v in zip(names, results)]) return out
至此,特征图的提取已全部完成,下面将进行 RPN(感兴趣区域的生成)。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。