赞
踩
Treasury bills are instruments issued by government to finance its short-term funding needs. They last one year or less.
The bid quote(买价) gives the price at which a market maker is prepared to buy the Treasury bill.
The ask quote(卖价) (or the offer quote) gives the price at which a market maker is prepared to sell the Treasury bill.
The mid-market price is the average of bid and ask prices.
The quoted price (
Q
Q
Q) and the cash price (
C
C
C)
C
=
100
−
n
360
×
Q
C=100-\frac{n}{360}\times Q
C=100−360n×Q
A Treasury bond lasts more than one year. Bonds with a maturity between one and ten years are sometimes referred to as Treasury notes.
“32nds” quotation convention
Example: The bond quoted as 83-5.
(
83
+
5
32
)
%
f
a
c
e
v
a
l
u
e
(83+\frac{5}{32})\% \;face\;value
(83+325)%facevalue
The quoted price ( Q Q Q) and the cash price ( C C C)
Day-count conventions:
STRIPS is an acronym Separate Trading of Registered Interest and Principal of Securities.
STRIPS are created by investment dealers when a coupon-bearing bond is delivered to the Treasury and exchanged for its principal and coupon components.
Convert
R
1
R_1
R1 (compounded
m
1
m_1
m1 times per annum) to the equivalent rate
R
2
R_2
R2(compounded
m
2
m_2
m2 times per annum):
(
1
+
R
1
m
1
)
m
1
=
(
1
+
R
2
m
2
)
m
2
(1+\frac{R_1}{m_1})^{m_1}=(1+\frac{R_2}{m_2})^{m_2}
(1+m1R1)m1=(1+m2R2)m2
Convert
R
m
R_m
Rm (compounded
m
m
m times per annum) to the equivalent rate
R
c
R_c
Rc (continuously compounded rate).
e R c ∗ m = ( 1 + R m m ) m e^{R_c*m}=(1+\frac{R_m}{m})^{m} eRc∗m=(1+mRm)m
The spot rate is the interest rate earned when cash is received at just one future time. It is also referred to as the zero-coupon interest rate, or just the “zero”.
Use a sequence of spot rates that correspond to the cash flow dates to calculate the bond price(The law of one price).
P
=
∑
t
=
1
n
C
(
1
+
Z
t
)
t
+
F
V
(
1
+
Z
n
)
n
P=\sum^n_{t=1}\frac{C}{(1+Z_t)^t}+\frac{FV}{(1+Z_n)^n}
P=t=1∑n(1+Zt)tC+(1+Zn)nFV
Z n Z_n Zn: spot rate for period n n n.
Bootstrap: instruments lasting longer than one year usually make regular payments prior to maturity.
One way of calculating the zero-coupon rates implied by these instruments is by working forward and fitting the zero-coupon rates to progressively longer maturity instruments.
Spot rate give the same information as discount factors.
Suppose the discount factor for
t
t
t years is
d
(
t
)
d(t)
d(t) and that the
t
−
y
e
a
r
t-year
t−year spot rate is
z
(
t
)
z(t)
z(t) with semi-annual compound
d
(
t
)
=
1
(
1
+
z
(
t
)
2
)
2
t
d(t)=\frac{1}{(1+\frac{z(t)}{2})^{2t}}
d(t)=(1+2z(t))2t1
Perpetuity is a security that pays coupons forever(票息除以折现率)
P e r p e t u i t y = C y Perpetuity=\frac{C}{y} Perpetuity=yC
Forward rates: the future spot rates implied by today’s spot rates.
Implied forward rates(IFR, forward yields): a break-even reinvestment rate that are calculated from spot rates.
When rates are expressed with continuous compounding, the forward rate for the period between time
T
1
T_1
T1 and
T
2
T_2
T2 is
F
=
R
2
T
2
−
R
1
T
1
T
2
−
T
1
F=\frac{R_2T_2-R_1T_1}{T_2-T_1}
F=T2−T1R2T2−R1T1
Forward rates can be used to value a bond in the same manner as spot rates because they are interconnected.
Discount bond cash flows one period by one period with forward rates.
Par rate is the coupon rate which bond is priced at par value.
For an asset with a par amount of one unit that makes semiannual payments and matures in T T T years
p
2
∑
t
=
1
2
t
d
(
t
2
)
+
d
(
T
)
=
1
\frac{p}{2}\sum^{2t}_{t=1}d(\frac{t}{2})+d(T)=1
2pt=1∑2td(2t)+d(T)=1
A
(
T
)
=
∑
t
=
1
2
t
d
(
t
2
)
A(T)=\sum^{2t}_{t=1}d(\frac{t}{2})
A(T)=t=1∑2td(2t)
Yield to maturity is a single discount rate which if applied to all the bond’s cash flows, would make the cash flow’s present value equal to the bond’s market price.
When YTM expressed with semi-annual compounding, the bond’s market price is :
P = c / 2 1 + y / 2 + c / 2 ( 1 + y / 2 ) 2 + ⋯ + c / 2 + 100 ( 1 + y / 2 ) 2 T P=\frac{c/2}{1+y/2}+\frac{c/2}{(1+y/2)^2}+\cdots+\frac{c/2+100}{(1+y/2)^{2T}} P=1+y/2c/2+(1+y/2)2c/2+⋯+(1+y/2)2Tc/2+100
Modefied duration = Δ P / P Δ y \text{Modefied duration}=\frac{\Delta P/P}{\Delta y} Modefied duration=ΔyΔP/P
Effective duration = V − − V + 2 × V 0 × Δ y \text{Effective duration}=\frac{V_{-}-V_{+}}{2\times V_0 \times \Delta y} Effective duration=2×V0×ΔyV−−V+
注意和convexity 公式对比
D V 01 = − Δ P 10 , 000 × Δ y DV01=-\frac{\Delta P}{10,000\times \Delta y} DV01=−10,000×ΔyΔP
D V 01 = Duration × Bond Value × 0.0001 DV01=\text{Duration}\times\text{Bond Value}\times0.0001 DV01=Duration×Bond Value×0.0001
H R = D V 01 ( initial position ) D V 01 ( hedging instrument ) HR=\frac{DV01(\text{initial position})}{DV01(\text{hedging instrument})} HR=DV01(hedging instrument)DV01(initial position)
D V 01 DV01 DV01更多用于对冲
convexity = V − + V + − 2 V 0 ( Δ y ) 2 V 0 \text{convexity}=\frac{V_{-}+V_{+}-2V_0}{(\Delta y)^2V_0} convexity=(Δy)2V0V−+V+−2V0
注意和effective duration 公式对比
Δ P = − D ∗ × P × Δ y + 0.5 × C × P × ( Δ y ) 2 \Delta P=-D^*\times P \times \Delta y+0.5\times C\times P \times (\Delta y)^2 ΔP=−D∗×P×Δy+0.5×C×P×(Δy)2
第一项有符号,第二项有0.5
V a R ( X % ) = ∣ E ( R ) − Z X % × σ ∣ VaR(X\%)=|E(R)-Z_{X\%}\times \sigma| VaR(X%)=∣E(R)−ZX%×σ∣
V a R ( X % ) dollar = ∣ E ( R ) − Z X % × σ ∣ × Asset Value VaR(X\%)_{\text{dollar}}=|E(R)-Z_{X\%}\times \sigma| \times \text{Asset Value} VaR(X%)dollar=∣E(R)−ZX%×σ∣×Asset Value
Z
X
%
=
{
1.28
,
when
X
=
10
1.65
,
when
X
=
5
2.33
when
X
=
1
Z_{X\%} =
Assuming return is normally distributed and E ( R ) = 0 E(R)=0 E(R)=0, V a R ( X % ) = ∣ Z X % × σ ∣ VaR(X\%)=|Z_{X\%}\times\sigma| VaR(X%)=∣ZX%×σ∣
The VaR for an investment opportunity is a function of two parameters:
The time horizon: VaR increases when the holding period is longer. Square root rule can be used.
σ J − p e r i o d s = σ 1 − p e r i o d × J → V a R ( X % ) J − p e r i o d s = V a R ( X % ) 1 − p e r i o d × J \sigma_{J-periods}=\sigma_{1-period}\times\sqrt{J} \to VaR(X\%)_{J-periods}=VaR(X\%)_{1-period}\times\sqrt{J} σJ−periods=σ1−period×J →VaR(X%)J−periods=VaR(X%)1−period×J
The confidence level: VaR increases when the degree of confidence increases.
V a R ( N e w % ) = V a R ( O l d % ) × ( Z N e w % / Z O l d % ) VaR(New\%)=VaR(Old\%)\times(Z_{New\%}/Z_{Old\%}) VaR(New%)=VaR(Old%)×(ZNew%/ZOld%)
Linear derivatives has a linear relationship between underlying risk factors(底层风险因子) and derivative instruments. The transmission parameter(
δ
\delta
δ) needs to be constant(e.g. forward, futures) 远期的
δ
\delta
δ 为
1
1
1
Δ
P
Linear Derivative
=
δ
×
Δ
S
Risk Factor
\Delta P_{\text{Linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}}
ΔPLinear Derivative=δ×ΔSRisk Factor
VaR Linear Derivative = δ × VaR Risk Factor \text{VaR}_{\text{Linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}} VaRLinear Derivative=δ×VaRRisk Factor
Nonlinear derivatives has a changing relationship between underlying risk factors and derivative instruments depending on the state of underlying asset. The transmission parameter(
δ
\delta
δ) is inconstant(e.g. option, bond).
Δ
P
Non-linear Derivative
=
δ
×
Δ
S
Risk Factor
\Delta P_{\text{Non-linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}}
ΔPNon-linear Derivative=δ×ΔSRisk Factor
VaR Non-linear Derivative = δ × VaR Risk Factor \text{VaR}_{\text{Non-linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}} VaRNon-linear Derivative=δ×VaRRisk Factor
Delta normal approach(Delta approximation) is based on the risk factor’s deltas of a portfolio and assumes normal distributions for the risk factors.
For standalone non-linear derivatives:
VaR option = ∣ Δ ∣ × VaR stock \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}} VaRoption=∣Δ∣×VaRstock
VaR bond = ∣ − D × P ∣ × VaR yield \text{VaR}_{\text{bond}}=|-D \times P|\times \text{VaR}_{\text{yield}} VaRbond=∣−D×P∣×VaRyield
对于call option, Δ = N ( d 1 ) \Delta =N(d_1) Δ=N(d1), 对于put option, Δ = 1 − N ( d 1 ) \Delta =1-N(d_1) Δ=1−N(d1)
When a call call option is at the money , Δ \Delta Δ is 0.5
For a portfolio:
VaR ( X % ) = ∣ μ portfolio − Z X % × σ portfolio ∣ \text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}| VaR(X%)=∣μportfolio−ZX%×σportfolio∣
σ portfolio 2 = w 1 2 σ 1 2 + w 2 2 σ 2 2 + 2 w 1 w 2 σ 1 σ 2 ρ 1 , 2 \sigma_\text{portfolio}^2=w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\sigma_1\sigma_2 \rho_{1,2} σportfolio2=w12σ12+w22σ22+2w1w2σ1σ2ρ1,2 用资产价值作为替代 w 1 w_1 w1, w 2 w_2 w2作为权重
Delta-Gamma approximation: the change in the derivative value is approximated by slope and curvature. The first derivative is delta linear approximation and second derivative is the gamma correction.
VaR bond = ∣ − D × P ∣ × VaR yield − 1 2 × C × P × VaR yield 2 \text{VaR}_{\text{bond}}=|-D\times P|\times \text{VaR}_{\text{yield}}-\frac{1}{2}\times C\times P\times \text{VaR}_{\text{yield}}^2 VaRbond=∣−D×P∣×VaRyield−21×C×P×VaRyield2
VaR option = ∣ Δ ∣ × VaR stock − 1 2 × Γ × VaR stock 2 \text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}-\frac{1}{2}\times\Gamma\times \text{VaR}_{\text{stock}}^2 VaRoption=∣Δ∣×VaRstock−21×Γ×VaRstock2
注意公式是减去 gamma correction
The result under delta-gamma approach should be less than the delta-approximation
In risk management, the volatility of an asset is the standard deviation of its return in one day.
σ n 2 = 1 m − 1 ∑ i = 1 m ( r n − i − r ‾ ) 2 \sigma_n^2=\frac{1}{m-1}\sum^m_{i=1}(r_{n-i}-\overline{r})^2 σn2=m−11i=1∑m(rn−i−r)2
Replace
m
−
1
m-1
m−1 with
m
m
m (reasonable when
m
m
m is big) and make
r
‾
=
0
\overline{r}=0
r=0 (reasonable as the mean of daily return approximates
0
0
0)
σ
n
2
=
1
m
∑
i
=
1
m
(
r
n
−
i
)
2
\sigma_n^2=\frac{1}{m}\sum^m_{i=1}(r_{n-i})^2
σn2=m1i=1∑m(rn−i)2
Exponentially weighted moving average(EWMA) gives more weight to more recent information and places exponentially declining weights on distant information(rather than using the equal weight).
ω + ω λ + ω λ 2 + ω λ 3 + ⋯ + ω λ k − 1 = 100 % → ω = 1 − λ \omega+\omega\lambda+\omega\lambda^2+\omega\lambda^3+\dots+\omega\lambda^{k-1}=100\% \to \omega=1-\lambda ω+ωλ+ωλ2+ωλ3+⋯+ωλk−1=100%→ω=1−λ
σ n 2 = ( 1 − λ ) r n − 1 2 + λ σ n − 1 2 \sigma^2_n=(1-\lambda)r_{n-1}^2+\lambda\sigma^2_{n-1} σn2=(1−λ)rn−12+λσn−12
EWMA can also be used to update correlation: assuming the return for asset
X
X
X and
Y
Y
Y are
x
n
x_n
xn and
y
n
y_n
yn, for consistency we should use the same value of
λ
\lambda
λ for updating both variance rates using and covariances using
ρ
n
=
c
o
v
n
σ
x
,
n
×
σ
y
,
n
\rho_n=\frac{cov_n}{\sigma_{x,n}\times \sigma_{y,n}}
ρn=σx,n×σy,ncovn
The updated covariance between the asset
X
X
X and
Y
Y
Y is
c
o
v
n
=
λ
c
o
v
n
−
1
+
(
1
−
λ
)
x
n
−
1
×
y
n
−
1
cov_n=\lambda cov_{n-1}+(1-\lambda)x_{n-1}\times y_{n-1}
covn=λcovn−1+(1−λ)xn−1×yn−1
The GARCH model can be regarded as an extension of EWMA.
In GARCH(1,1), we not only give some weight to the most recent variance rate and the latest squared return, but also give some weight to a long run average variance rate.
σ n 2 = γ V L + α r n − 1 2 + β σ n − 1 2 \sigma^2_n=\gamma V_{L}+\alpha r^2_{n-1}+\beta\sigma^2_{n-1} σn2=γVL+αrn−12+βσn−12
Setting ω = γ V L \omega=\gamma V_{L} ω=γVL, the GARCH(1,1) model is
σ n 2 = ω + α r n − 1 2 + β σ n − 1 2 \sigma^2_n=\omega+\alpha r^2_{n-1}+\beta\sigma^2_{n-1} σn2=ω+αrn−12+βσn−12
V L = ω / ( 1 − α − β ) , α + β < 1 V_{L}=\omega/(1-\alpha-\beta) ,\; \alpha+\beta<1 VL=ω/(1−α−β),α+β<1
U L = E A × P D × σ L R 2 + L R 2 × σ P D 2 UL=EA\times\sqrt{PD\times\sigma^2_{LR}+LR^2\times\sigma^2_{PD}} UL=EA×PD×σLR2+LR2×σPD2
注意根号下的“非对称”
R C 1 = U L 1 U L 1 + ( ρ 1 , 2 × U L 2 ) U L p {RC}_1={UL}_1\frac{{UL}_1+(\rho_{1,2}\times{UL}_2)}{{UL}_p} RC1=UL1ULpUL1+(ρ1,2×UL2)
R C 2 = U L 2 U L 2 + ( ρ 1 , 2 × U L 1 ) U L p {RC}_2={UL}_2\frac{{UL}_2+(\rho_{1,2}\times{UL}_1)}{{UL}_p} RC2=UL2ULpUL2+(ρ1,2×UL1)
U i = a i F + 1 − a i 2 Z i U_i=a_iF+\sqrt{1-a_i^2}Z_i Ui=aiF+1−ai2 Zi
a i a_i ai 介于 − 1 -1 −1 和 1 1 1 之间
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。