当前位置:   article > 正文

Matlab Robotics 逆运动学求解函数(ikine)分析_警告: ikine: rejected-step limit 100 exceeded (pose

警告: ikine: rejected-step limit 100 exceeded (pose 1), final err 0.638593 >

注:全文为本人见解,如有错误请指点!

一. 源代码的解释

以下代码直接对robotics工具箱中的ikine函数进行解释

%SerialLink.ikine Inverse kinematics by optimization without joint limits
%
% Q = R.ikine(T) are the joint coordinates (1xN) corresponding to the robot
% end-effector pose T which is an SE3 object or homogenenous transform
% matrix (4x4), and N is the number of robot joints.
%
% This method can be used for robots with any number of degrees of freedom.
% 这个方法适用于任意自由度的机器人
%
% Options::
% 'ilimit',L        maximum number of iterations (default 500)      迭代次数
% 'rlimit',L        maximum number of consecutive step rejections (default 100)      最大连续拒绝次数
% 'tol',T           final error tolerance (default 1e-10)   最终误差容限
% 'lambda',L        initial value of lambda (default 0.1)   步长
% 'lambdamin',M     minimum allowable value of lambda (default 0)	步长的最小值
% 'quiet'           be quiet	输出保持安静
% 'verbose'         be verbose		输出内容详细
% 'mask',M          mask vector (6x1) that correspond to translation in X, Y and Z, 
%                   and rotation about X, Y and Z respectively.		mask向量,表示机器人自由度
% 'q0',Q            initial joint configuration (default all zeros)     迭代的初始关节形位
% 'search'          search over all configurations      搜索所有形位
% 'slimit',L        maximum number of search attempts (default 100)     最大搜索尝试数目
% 'transpose',A     use Jacobian transpose with step size A, rather than
%                   Levenberg-Marquadt      使用步长为A的雅可比转置,而不是LM方法
%
% Trajectory operation::
%
% In all cases if T is a vector of SE3 objects (1xM) or a homogeneous
% transform sequence (4x4xM) then returns the joint coordinates
% corresponding to each of the transforms in the sequence.  Q is MxN where
% N is the number of robot joints. The initial estimate of Q for each time
% step is taken as the solution from the previous time step.
% 使用上一步的解作为当前步的初始值
%
% Underactuated robots::    欠驱动机器人
%
% For the case where the manipulator has fewer than 6 DOF the solution
% space has more dimensions than can be spanned by the manipulator joint
% coordinates.
% 欠驱动机器人解空间维数比关节坐标维数多?
%
% In this case we specify the 'mask' option where the mask
% vector (1x6) specifies the Cartesian DOF (in the wrist coordinate
% frame) that will be ignored in reaching a solution.  The mask vector
% has six elements that correspond to translation in X, Y and Z, and rotation
% about X, Y and Z respectively.  The value should be 0 (for ignore) or 1.
% The number of non-zero elements should equal the number of manipulator DOF.
% 使用“mask”矢量指定失去的自由度,机器人自由度等于改矢量的非零元素的个数。
%
% For example when using a 3 DOF manipulator rotation orientation might be
% unimportant in which case use the option: 'mask', [1 1 1 0 0 0].
% 举个例子,当使用三自由度机械手时,旋转方向可能不重要(不影响逆运动学求解),mask向量设置为[1 1 1 0 0 0]
%
% For robots with 4 or 5 DOF this method is very difficult to use since
% orientation is specified by T in world coordinates and the achievable
% orientations are a function of the tool position.
% 对于45个自由度的机器人,这种方法较难使用
%
% References::
% - Robotics, Vision & Control, P. Corke, Springer 2011, Section 8.4.
%
% Notes::
% - This has been completely reimplemented in RTB 9.11
% - Does NOT require MATLAB Optimization Toolbox.   不需要matlab优化工具箱
% - Solution is computed iteratively.   采用迭代的方法
% - Implements a Levenberg-Marquadt variable step size solver.
%   通过LM变步长求解器实现
% - The tolerance is computed on the norm of the error between current
%   and desired tool pose.  This norm is computed from distances
%   and angles without any kind of weighting.
%   误差是根据当前工具姿态和期望(求解)姿态的范数计算
% - The inverse kinematic solution is generally not unique, and
%   depends on the initial guess Q0 (defaults to 0).
%   求解的值不唯一,且与初值有关,初值Q0默认为0
% - The default value of Q0 is zero which is a poor choice for most
%   manipulators (eg. puma560, twolink) since it corresponds to a kinematic
%   singularity.
%   Q0设置为[0 0 0 0 0 0],这对于部机器人(puma560,twolink)不是好选择,因为其对应运动学奇点
% - Such a solution is completely general, though much less efficient
%   than specific inverse kinematic solutions derived symbolically, like
%   ikine6s or ikine3.
% 	这是通用的解法,所以效率不高
% - This approach allows a solution to be obtained at a singularity, but
%   the joint angles within the null space are arbitrarily assigned.
% 	此方法可能在奇异点求出解
% - Joint offsets, if defined, are added to the inverse kinematics to
%   generate Q.
% 	如果定义了关节偏移,将添加到逆运动学中以生成Q
% - Joint limits are not considered in this solution.
%  不考虑关节的范围限制
% - The 'search' option peforms a brute-force search with initial conditions
%   chosen from the entire configuration space.
% 	“search”选项形成一个强力搜索,初始条件从整个关节空间中随机选择
% - If the 'search' option is used any prismatic joint must have joint
%   limits defined.
% 	如果使用“搜索”选项,则任何移动关节都必须定义关节范围
%
% See also SerialLink.ikcon, SerialLink.ikunc, SerialLink.fkine, SerialLink.ikine6s.



% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
% 
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% 
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU Lesser General Public License for more details.
% 
% You should have received a copy of the GNU Leser General Public License
% along with RTB.  If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com

%TODO:
% search do a broad search from random points in configuration space

function qt = ikine(robot, tr, varargin)
    
    n = robot.n;        	%关节变量的个数
    
    TT = SE3.check(tr);     %转换为SE3矩阵
        
    %  set default parameters for solution   默认参数设置
    opt.ilimit = 500;   	%默认迭代次数
    opt.rlimit = 100;   	%最大连续拒绝次数
    opt.slimit = 100;   	%最大尝试次数
    opt.tol = 1e-10;    	%默认迭代误差
    opt.lambda = 0.1;  		%默认步长
    opt.lambdamin = 0;  	%默认步长最小值
    opt.search = false; 	%默认关闭搜索初值
    opt.quiet = false;  	%保持安静,减少输出
    opt.verbose = false;        %输出的信息详细
    opt.mask = [1 1 1 1 1 1];   %默认六自由度
    opt.q0 = zeros(1, n);   	%初始关节形位为零位
    opt.transpose = NaN;    	%默认使用LM方法
    
    [opt,args] = tb_optparse(opt, varargin);	%输入参数传递
    
    if opt.search    				%如果为true,执行,随机选取迭代初值
        % randomised search for a starting point
        
        opt.search = false;         %关闭搜索初值
        opt.quiet = true;           %保持安静
        %args = args{2:end};
        
        for k=1:opt.slimit          %循环到最大尝试次数
            for j=1:n
                qlim = robot.links(j).qlim;     %传递机器人关节变量的范围
                if isempty(qlim)    			%是否为空集
                    if robot.links(j).isrevolute    %是否为旋转关节
                        q(j) = rand*2*pi - pi;      %产生-pi到pi的随机初值
                    else
                        error('For a prismatic joint, search requires joint limits');   %对于移动关节,需要定义关节范围
                    end
                else
                    q(j) = rand*(qlim(2)-qlim(1)) + qlim(1);    %产生关节范围内的随机初值
                end
            end
            fprintf('Trying q = %s\n', num2str(q));     %输出“尝试q的值为 ”
            
            q = robot.ikine(tr, q, args{:}, 'setopt', opt);     %以此为初值,计算结果
            if ~isempty(q)
                qt = q;									%如果不为空集,q为所求值
                return;
            end
        end
        error('no solution found, are you sure the point is reachable?');   %找不到解,你确定该点可到达?(尝试完最大尝试次数)
        qt = [];
        return
    end
    
    assert(numel(opt.mask) == 6, 'RTB:ikine:badarg', 'Mask matrix should have 6 elements');     %如果mask没有6个参数,报错
    assert(n >= numel(find(opt.mask)), 'RTB:ikine:badarg', 'Number of robot DOF must be >= the same number of 1s in the mask matrix');      %如果机器人自由度小于mask矩阵的1元素个数,报错
    W = diag(opt.mask);     %W为以mask矩阵为对角线的矩阵
    
    
    qt = zeros(length(TT), n);  % preallocate space for results   为解预分配空间
    tcount = 0;              % total iteration count    初始化总迭代次数
    rejcount = 0;            % rejected step count      初始化持续拒绝的迭代次数
    
    q = opt.q0;     %给迭代初值
    
    failed = false;                     %迭代失败的标签
    revolutes = robot.isrevolute();     %给机器人的关节构型(移动为0或旋转为1,全为旋转为[1 1 1 1 1 1]for i=1:length(TT)                  %循环到输入的SE3的个数
        T = TT(i);                      %给其中某个SE3
        lambda = opt.lambda;            %给默认步长

        iterations = 0;                 %初始化迭代次数
        
        if opt.debug                    %是否调试程序,默认不调试,跳 if
            e = tr2delta(robot.fkine(q), T);    %给从初始零位的位姿到输入位姿的对应微分运动,d=(dx, dy, dz, dRx, dRy, dRz)
            fprintf('Initial:  |e|=%g\n', norm(W*e));
        end
        
        while true                              %开始进行迭代
            % update the count and test against iteration limit
            iterations = iterations + 1;        %计数迭代次数
            if iterations > opt.ilimit          %超过迭代最大次数
                if ~opt.quiet                   %quiet值为0,不保持安静,执行
                    warning('ikine: iteration limit %d exceeded (pose %d), final err %g', ...
                        opt.ilimit, i, nm);
                end
                failed = true;
                break                           %迭代失败,并跳出循环
            end
            
            e = tr2delta(robot.fkine(q), T);
            
            % are we there yet
            if norm(W*e) < opt.tol
                break;                          %如果小于容许误差,跳出循环
            end
            
            % compute the Jacobian
            J = jacobe(robot, q);               %给当前形位下的雅各比矩阵
            
            JtJ = J'*W*J;
            
            if ~isnan(opt.transpose)            %是否使用LM方法,进行
                % do the simple Jacobian transpose with constant gain
                dq = opt.transpose * J' * e;
            else
                % do the damped inverse Gauss-Newton with Levenberg-Marquadt
                % 用LM法做阻尼逆高斯牛顿
                dq = inv(JtJ + (lambda + opt.lambdamin) * eye(size(JtJ)) ) * J' * W * e;        %迭代公式
                
                % compute possible new value of   得到新的关节值
                qnew = q + dq';
                
                % and figure out the new error    得到新的误差值
                enew = tr2delta(robot.fkine(qnew), T);
                
                % was it a good update?
                if norm(W*enew) < norm(W*e)			%该步是否成功
                    % step is accepted		
                    if opt.debug                %是否调试程序,默认不调试,跳 if
                        fprintf('ACCEPTED: |e|=%g, |dq|=%g, lambda=%g\n', norm(W*enew), norm(dq), lambda);
                    end
                    q = qnew;
                    e = enew;					%给迭代新值
                    lambda = lambda/2;
                    rejcount = 0;               %持续拒绝的迭代次数置0
                else
                    % step is rejected, increase the damping and retry
                    % 该步被拒绝,增加阻尼并重试
                    if opt.debug                %是否调试程序,默认不调试,跳 if
                        fprintf('rejected: |e|=%g, |dq|=%g, lambda=%g\n', norm(W*enew), norm(dq), lambda);
                    end
                    lambda = lambda*2;
                    rejcount = rejcount + 1;
                    if rejcount > opt.rlimit        %超过最大拒绝次数,进行
                        if ~opt.quiet				%是否保持输出安静,默认保持,跳 else
                            warning('ikine: rejected-step limit %d exceeded (pose %d), final err %g', ...
                                opt.rlimit, i, norm(W*enew));
                        end
                        failed = true;
                        break;                      %迭代失败,跳出循环
                    end
                    continue;                       % try again   修改步长后继续尝试
                end
            end
            
            
            % wrap angles for revolute joints		将旋转关节的关节值移到-pi~pi中
            k = (q > pi) & revolutes;
            q(k) = q(k) - 2*pi;
            
            k = (q < -pi) & revolutes;
            q(k) = q(k) + 2*pi;
            
            nm = norm(W*e);
            
            
        end  % end ikine solution for this pose
        qt(i,:) = q';
        tcount = tcount + iterations;             %总共迭代次数,包括多个SE3值的情况
        if opt.verbose && ~failed                 %是否保持输出详细且迭代成功
            fprintf('%d iterations\n', iterations);
        end
        if failed
            if ~opt.quiet                         %是否失败且不保持安静
                warning('failed to converge: try a different initial value of joint coordinates');      %未能收敛,尝试不同的初值
            end
            qt = [];
        end
    end
    
    
    if opt.verbose && length(TT) > 1              %如果详细且有多个SE3值
        fprintf('TOTAL %d iterations\n', tcount);       %输出总迭代次数
    end      
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
二. 一些解释
  1. 设置的”search“选项不起作用
    我经过多次尝试,发现无论其随机选取的迭代初值q为多少,程序实际上还是从q0=[0 0 0 0 0 0]开始迭代。
    我猜测,q = robot.ikine(tr, q, args{:}, 'setopt', opt);这行代码有问题。
    随机选取的迭代初值q,并没有被传递进去。
    将这行代码改为 q = robot.ikine(tr, 'setopt', opt, 'q0',q, args{:}); 有效果,但不知是否有其他影响,请慎重

  2. 迭代公式
    未完待续~

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/262689
推荐阅读
相关标签
  

闽ICP备14008679号