当前位置:   article > 正文

linux open函数打开文件_do_filp_open

do_filp_open

Linux中打开文件是通过open系统调用实现,其函数中调用了do_sys_open()函数完成打开功能,所以下面主要分析do_sys_open()函数,首先先看下open系统调用的入口函数,再具体看do_sys_open()函数:

SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, int, mode)

{

         long ret;

 

         if (force_o_largefile())

                   flags |= O_LARGEFILE;

 

         ret = do_sys_open(AT_FDCWD, filename, flags, mode);

         /* avoid REGPARM breakage on x86: */

         asmlinkage_protect(3, ret, filename, flags, mode);

         return ret;

}

 

 

long do_sys_open(int dfd, const char __user *filename, int flags, int mode)

{

/*获取文件名称,由getname()函数完成,其内部首先创建存取文件名称的空间,然后*从用户空间把文件名拷贝过来*/

         char *tmp = getname(filename);

         int fd = PTR_ERR(tmp);

 

         if (!IS_ERR(tmp)) {

/*获取一个可用的fd,此函数调用alloc_fd()函数从fd_table中获取一个可用fd,并做些简单初始化,此函数内部实现比较简单,此次分析不细看*/

                   fd = get_unused_fd_flags(flags);

                   if (fd >= 0) {

/*fd获取成功则开始打开文件,此函数是主要完成打开功能的函数,在此先放一放,下面详细分析*/

                            struct file *f = do_filp_open(dfd, tmp, flags, mode, 0);

                            if (IS_ERR(f)) {

                                     /*打开失败,释放fd*/

                                     put_unused_fd(fd);

                                     fd = PTR_ERR(f);

                            } else {

                                     /*文件如果已经被打开了,调用fsnotify_open()函数*/

                                     fsnotify_open(f->f_path.dentry);

                                     /*将文件指针安装在fd数组中*/

                                     fd_install(fd, f);

                            }

                   }

                   /*释放放置从用户空间拷贝过来的文件名的存储空间*/

                   putname(tmp);

         }

         return fd;

}

 

接下来即将进入到打开功能的真正实现功能的函数do_filp_open()函数:

struct file *do_filp_open(int dfd, const char *pathname,

                   int open_flag, int mode, int acc_mode)

{

         /*

         *…若干变量声明

         */

         /*改变参数flag的值,具体做法是flag+1*/

         int flag = open_to_namei_flags(open_flag);

         int force_reval = 0;

 

         /*根据__O_SYNC标志来设置O_DSYNC 标志,用以防止恶意破坏程序*/

         if (open_flag & __O_SYNC)

                   open_flag |= O_DSYNC;

         /*设置访问权限*/

         if (!acc_mode)

                   acc_mode = MAY_OPEN | ACC_MODE(open_flag);

 

         /*根据 O_TRUNC标志设置写权限 */

         if (flag & O_TRUNC)

                   acc_mode |= MAY_WRITE;

 

         /* 设置O_APPEND 标志*/

         if (flag & O_APPEND)

                   acc_mode |= MAY_APPEND;

 

         /*如果不是创建文件*/

         if (!(flag & O_CREAT)) {

                   /*返回特定的file结构体指针*/

                   filp = get_empty_filp();

 

                   if (filp == NULL)

                            return ERR_PTR(-ENFILE);

                   /*填充nameidata 结构*/

                   nd.intent.open.file = filp;

                   filp->f_flags = open_flag;

                   nd.intent.open.flags = flag;

                   nd.intent.open.create_mode = 0;

/*当内核要访问一个文件的时候,第一步要做的是找到这个文件,而查找文件的过程在vfs里面是由path_lookup或者path_lookup_open函数来完成的。这两个函数将用户传进来的字符串表示的文件路径转换成一个dentry结构,并建立好相应的inodefile结构,将指向file的描述符返回用户。用户随后通过文件描述符,来访问这些数据结构*/

                   error = do_path_lookup(dfd, pathname,

                                               lookup_flags(flag)|LOOKUP_OPEN, &nd);

                   if (IS_ERR(nd.intent.open.file)) {

                            if (error == 0) {

                                     error = PTR_ERR(nd.intent.open.file);

                                     /*减少dentry和vsmount得计数*/

                                     path_put(&nd.path);

                            }

                   } else if (error)

                            /*如果查找失败则释放一些资源*/

                            release_open_intent(&nd);

                   if (error)

                            return ERR_PTR(error);

                   goto ok;

         }

 

         /*到此则是要创建文件*/

reval:

         /* path-init为查找作准备工作,path_walk真正上路查找,这两个函数联合起来根据一段路径名找到对应的dentry */

         error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);

         if (error)

                   return ERR_PTR(error);

         if (force_reval)

                   nd.flags |= LOOKUP_REVAL;

/*这个函数相当重要,就如源代码注释的那样,是整个NFS的名字解析函数,其实也是NFS得以构筑的函数。这里作一重点分析。这里先作一个综述。该函数采用一个for循环,对name路径根据目录的层次,一层一层推进,直到终点或失败。在推进的过程中,一步步建立了目录树的dentry和对应的inode */

         error = path_walk(pathname, &nd);

         if (error) {

                   if (nd.root.mnt)

                            path_put(&nd.root);

                   return ERR_PTR(error);

         }

         if (unlikely(!audit_dummy_context()))

                   /*保存inode节点信息*/

                   audit_inode(pathname, nd.path.dentry);

 

         /*父节点信息*/

         error = -EISDIR;

         if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])

                   goto exit_parent;

 

         error = -ENFILE;

         /*获取文件指针*/

         filp = get_empty_filp();

         if (filp == NULL)

                   goto exit_parent;

         /*填充nameidata 结构*/

         nd.intent.open.file = filp;

         filp->f_flags = open_flag;

         nd.intent.open.flags = flag;

         nd.intent.open.create_mode = mode;

         dir = nd.path.dentry;

         nd.flags &= ~LOOKUP_PARENT;

         nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;

         if (flag & O_EXCL)

                   nd.flags |= LOOKUP_EXCL;

         mutex_lock(&dir->d_inode->i_mutex);

         /*从哈希表中查找nd对应的dentry*/

         path.dentry = lookup_hash(&nd);

         path.mnt = nd.path.mnt;

 

do_last:

         error = PTR_ERR(path.dentry);

         if (IS_ERR(path.dentry)) {

                   mutex_unlock(&dir->d_inode->i_mutex);

                   goto exit;

         }

 

         if (IS_ERR(nd.intent.open.file)) {

                   error = PTR_ERR(nd.intent.open.file);

                   goto exit_mutex_unlock;

         }

 

         /*如果此dentry结构没有对应的inode节点,说明是无效的,应该创建文件节点 */

         if (!path.dentry->d_inode) {

                   /*write权限是必需的*/

                   error = mnt_want_write(nd.path.mnt);

                   if (error)

                            goto exit_mutex_unlock;

                   /*按照namei格式的flag open*/

                   error = __open_namei_create(&nd, &path, flag, mode);

                   if (error) {

                            mnt_drop_write(nd.path.mnt);

                            goto exit;

                   }

                   /*根据nameidata 得到相应的file结构*/

                   filp = nameidata_to_filp(&nd);

                   /*放弃写权限*/

                   mnt_drop_write(nd.path.mnt);

                   if (nd.root.mnt)

                            /*计数减一*/

                            path_put(&nd.root);

                   if (!IS_ERR(filp)) {

                            error = ima_file_check(filp, acc_mode);

                            if (error) {

                                     fput(filp);

                                     filp = ERR_PTR(error);

                            }

                   }

                   return filp;

         }

 

         /*要打开的文件已经存在*/

         mutex_unlock(&dir->d_inode->i_mutex);

         /*保存inode节点*/

         audit_inode(pathname, path.dentry);

 

/*

         *省略若干flag标志检查代码

         */

 

         /*路径装化为相应的nameidata 结构*/

         path_to_nameidata(&path, &nd);

         error = -EISDIR;

         /*如果是文件夹*/

         if (S_ISDIR(path.dentry->d_inode->i_mode))

                   goto exit;

ok:

         /*检测是否截断文件标志*/

         will_truncate = open_will_truncate(flag, nd.path.dentry->d_inode);

         if (will_truncate) {

         /*要截断的话就要获取写权限*/

                   error = mnt_want_write(nd.path.mnt);

                   if (error)

                            goto exit;

         }

         //may_open执行权限检测、文件打开和truncate的操作

         error = may_open(&nd.path, acc_mode, flag);

         if (error) {

                   if (will_truncate)

                            mnt_drop_write(nd.path.mnt);

                   goto exit;

         }

         filp = nameidata_to_filp(&nd);

         if (!IS_ERR(filp)) {

                   error = ima_file_check(filp, acc_mode);

                   if (error) {

                            fput(filp);

                            filp = ERR_PTR(error);

                   }

         }

         if (!IS_ERR(filp)) {

                   if (acc_mode & MAY_WRITE)

                            vfs_dq_init(nd.path.dentry->d_inode);

 

                   if (will_truncate) {

                            //处理截断

                            error = handle_truncate(&nd.path);

                            if (error) {

                                     fput(filp);

                                     filp = ERR_PTR(error);

                            }

                   }

         }

         //安全的放弃写权限

         if (will_truncate)

                   mnt_drop_write(nd.path.mnt);

         if (nd.root.mnt)

                   path_put(&nd.root);

         return filp;

 

exit_mutex_unlock:

         mutex_unlock(&dir->d_inode->i_mutex);

exit_dput:

         path_put_conditional(&path, &nd);

exit:

         if (!IS_ERR(nd.intent.open.file))

                   release_open_intent(&nd);

exit_parent:

         if (nd.root.mnt)

                   path_put(&nd.root);

         path_put(&nd.path);

         return ERR_PTR(error);

//允许遍历连接文件,则手工找到连接文件对应的文件

do_link:

         error = -ELOOP;

         if (flag & O_NOFOLLOW)

                   //不允许遍历连接文件,返回错误

                   goto exit_dput;

         /*

          以下是手工找到链接文件对应的文件dentry结构代码

          */

         // 设置查找LOOKUP_PARENT标志

         nd.flags |= LOOKUP_PARENT;

         //判断操作是否安全

         error = security_inode_follow_link(path.dentry, &nd);

         if (error)

                   goto exit_dput;

         // 处理符号链接

         error = __do_follow_link(&path, &nd);

         path_put(&path);

         if (error) {

        

                   release_open_intent(&nd);

                   if (nd.root.mnt)

                            path_put(&nd.root);

                   if (error == -ESTALE && !force_reval) {

                            force_reval = 1;

                            goto reval;

                   }

                   return ERR_PTR(error);

         }

         nd.flags &= ~LOOKUP_PARENT;

         // 检查最后一段文件或目录名的属性情况

         if (nd.last_type == LAST_BIND)

                   goto ok;

         error = -EISDIR;

         if (nd.last_type != LAST_NORM)

                   goto exit;

         if (nd.last.name[nd.last.len]) {

                   __putname(nd.last.name);

                   goto exit;

         }

         error = -ELOOP;

         // 出现回环标志: 循环超过32次

         if (count++==32) {

                   __putname(nd.last.name);

                   goto exit;

         }

         dir = nd.path.dentry;

         mutex_lock(&dir->d_inode->i_mutex);

         // 更新路径的挂接点和dentry

         path.dentry = lookup_hash(&nd);

         path.mnt = nd.path.mnt;

         __putname(nd.last.name);

         goto do_last;

}

分析完上述主要函数以后,我们来看一下整个打开流程是如何做到的:

在内核中要打开一个文件,首先应该找到这个文件,而查找文件的过程在vfs里面是由do_path_lookup或者path_lookup_open函数来完成的。这两个函数将用户传进来的字符串表示的文件路径转换成一个dentry结构,并建立好相应的inode和file结构,将指向file的描述符返回用户。用户随后通过文件描述符,来访问这些数据结构。

基本函数流程及调用方式如下所示:

打开过程首先是open系统调用访问SYSCALL_DEFINE3函数,然后调用do_sys_open 函数完成主要功能,再调用函数do_filp_open完成主要的打开功能,下面详细看下do_filp_open中调用的do_path_lookup主要过程:

staic int  do_path_lookup(int dfd,const char

*name,unsigned int flags,strucy nameidata *nd)

{

           int retval=path_init(dfd,name,flags,nd);

//设置nd->root=根路径(绝对地址)或者当前工作目录(相对地址) 。

//这一步做完了后,内核会建立一些数据结构(dentry,inode)来初始化查找的起点

           if(!retval)

                       retval = path_walk(name,nd);

//path_walk,会遍历路径的每一份量,也就是用“/”分隔开的每一部分,

//最中找到name指向的文件,walk的意思就是walk path的每一个组分(component)

        }

 

我们进一步看看path_walk

int path_walk(const char *name,struct nameidata *nd)

{

            return link_path_walk(name,nd);

//path_walk其实相当于直接调用link_path_walk来完成工作

}

link_path_walk的主要工作是有其内部函数__link_path_walk 来完成的

          result = __link_path_walk(name,nd)

        

至此我们转向最重要的代码__link_walk_path,该函数把传进来的字符串name,也就是用户指定的路径,按路径分隔符分解成一系列小的component。比如用户说,我要找/path/to/dest这个文件,那么我们的文件系统就会按path,to,dest一个一个来找,知道最后一个分量是文件或者查找完成。他找的时候,会先用path_init初始化过的根路径去找第一个分量,也就是path。然后用path的dentry->d_inode去找to,这样循环到最后一个。注意,内核会缓存找到的路径分量,所以往往只有第一次访问一个路径的时候,才会去访问磁盘,后面的访问会直接从缓存里找,下面会看到,很多与页告诉缓存打交道的代码。但不管怎样,第一遍查找总是会访问磁盘的。

static int __link_path_walk(const char *name,strucy

nameidata *nd)

{

}

至此,按照每一个component查找完成之后,就会找到相应的文件,然后相应的打开工作就基本完成了。


转自:http://blog.csdn.net/f413933206/article/details/5701913

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/278451
推荐阅读
相关标签
  

闽ICP备14008679号