当前位置:   article > 正文

毫米波雷达与激光雷达探秘_毫米波雷达发射点云为什么比激光少

毫米波雷达发射点云为什么比激光少

激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,计算时是按照光的特性来计算。而毫米波雷达是指工作在毫米波波段探测的雷达。毫米波实质上就是电磁波,利用多普勒效应计算。

毫米波的频段比较特殊,其频率高于无线电,低于可见光和红外线,频率大致范围是10GHz—200GHz。

从工作原理上来讲,激光雷达和毫米波雷达基本类似,都是利用回波成像来构显被探测物体的,就相当于人类用双眼探知而蝙蝠是依靠超声波探知的区别。不过激光雷达发射的电磁波是一条直线,主要以光粒子发射为主要方法,而毫米波雷达发射出去的电磁波是一个锥状的波束,这个波段的天线主要以电磁辐射为主。

从探测精度上来讲,激光雷达具有探测精度高、探测范围广及稳定性强等优点,在精确度方面,毫米波雷达的探测距离受到频段损耗的直接制约(想要探测的远,就必须使用高频段雷达),也无法感知行人,并且对周边所有障碍物无法进行精准的建模。这一点就大不如激光雷达。

从抗干扰能力上来讲,由于激光雷达通过发射光束进行探测,受环境影响较大,光束受遮挡后就不能正常使用,因此无法在雨雪雾霾天,沙尘暴等恶劣天气中开启,而毫米波导引头穿透雾、烟、灰尘的能力强,因此可以在糟糕的天气中探测,在这一点上毫米波雷达更胜一筹。

从价格上来讲,激光雷达比毫米波雷达在测距、识别障碍物方面更准确,但由于激光雷达获取的数据量远超毫米波雷达,所以需要更高性能的处理器来处理数据,成本高了,售价自然就更贵了。但激光雷达在准确性上可以得到更多的保证。

几种传感器性能对标

 

激光雷达和毫米波雷达。习惯且依赖驾驶汽车的人们,对这两种事物肯定不会陌生。前者在真正的无人车应用领域所向披靡,最近Apple又把它带入了消费电子类产品中,把Lidar概念引入到iPad中,让笔者以为iPad装上四个轱辘就可以自己开车了。而毫米波雷达目前被广泛应用在L2-L3的辅助驾驶汽车中,特斯拉汽车用8个摄像头、12个超声波传感器和一个77GHz毫米波雷达实现了autopilot辅助驾驶功能,当然mobileye的ADAS系统和nVidia的GPU也是功不可没的。

其实Lidar和毫米波雷达都属于电磁波雷达的范畴,只是毫米波雷达技术属于微波范畴,用毫米波作为发射源,而Lidar技术用红外线光、可见光或紫外光等纳米波作为光源。

其实在很久以前,有一种关于人类视觉成像的假说,这种假说认为人们觉得眼睛会发出的看不见的光线,然后击中了外面的世界中的物体,使它们变得对人类可见。当然,你我都知道,事实的情况情况并非如此,反而是物体发出的光击中了人眼,才让人们感知。

但这并不意味着这不是一个完美的观察方式。事实上,这种原理就是激光雷达背后的基本思想,一种数字式的成像形式,已经被证明在从考古学到自动驾驶汽车、消费电子产品所有领域都非常有用。前阵子,Lidar帮助考古学家对玛雅文化的古城进行了深度建模。

 无论是毫米波雷达,还是Lidar,都需要存在一组或多组发射接收装置。以Lidar为例,传统的机械Lidar需要光源、反射镜、和接收器。由于早期的Lidar系统采用纯机械式探测方式,是指其发射系统和接收系统存在宏观意义上的转动,也就是通过不断旋转发射头,将速度更快、发射更准的激光从“线”变成“面”,并在竖直方向上排布多束激光(即32线或64线雷达),形成多个面,达到动态3D扫描并动态接收信息的目的。

这也就造成了它体积的庞大,不好与小型的消费电子产品集成。且价格十分昂贵。2018年Google发布的无人驾驶汽车,一个机械式Lidar的就要7万美元。这种体积庞大、价格昂贵的机械式Lidar难逃变为先烈的厄运。

归功于半导体技术的发展,制造内部非移动结构或相对较小的移动结构的Lidar器件,成为了Lidar小型化的首要任务,目前Lidar小型化的技术设想主要有三种。

  • MEMS(Micro-Electro-Mechanical System)微机电系统
  • OPA(optical phased array)光学相控阵技术
  • Flash

激光由于波长较短,面对极端天气如雨、雾、霾时,测量准确性会大大下降。这时毫米波雷达的存在就显得十分有必要了。

在智能驾驶传感器领域,和LiDAR相比,毫米波雷达更接地气,在技术上已非常成熟,而且其市场出货量相当可观,毫米波实质上就是电磁波。毫米波的频段比较特殊,其频率高于无线电,低于可见光和红外线,频率大致范围是10GHz—200GHz。毫米波介于微波和THz(1000GHz)之间,可以说是微波的一个子集。

在这个频段,毫米波相关的特性使其非常适合应用于车载领域。目前,比较常见的车载领域的毫米波雷达频段有三类。

其一是24—24.25GHz这个频段,目前大量应用于汽车的盲点监测、变道辅助。雷达安装在车辆的后保险杠内,用于监测车辆后方两侧的车道是否有车、可否进行变道。这个频段也有其缺点,首先是频率比较低,另外就是带宽比较窄,只有250MHz。

 

 第二类频段就是77GHz,这个频段的频率比较高,国际上允许的带宽高达800MHz。这个频段的雷达性能要好于24GHz的雷达,所以主要用来装配在车辆的前保险杠上,探测与前车的距离以及前车的速度,实现的主要是紧急制动、自动跟车等主动安全领域的功能。

 

 第三类应用频段就是77GHz—81GHz,这个频段最大的特点就是其带宽非常宽,要比77GHz的高出3倍以上,大约为4GHz。这也使其具备非常高的分辨率,可以达到5cm。这个分辨率在自动驾驶领域非常有价值,因为自动驾驶汽车要区分行人等诸多精细物体,对带宽的要求很高。

 而在波长方面,24GHz毫米波的波长是1.25cm,而77GHz毫米波的波长大概是4mm,毫米波的波长要比光波的波长长1000倍以上,所以它对物体的穿透能力更强。

77GHz雷达比24GHz的第一个优势在距离分辨率和精度。

与24GHz频段下的只有250MHz带宽的ISM频段相比,77GHz频段下的SRR频带可提供高达4GHz的扫描带宽,显著提高了距离分辨率和精度。

由于距离分辨率和精度与扫描带宽成反比,因此与24GHz雷达相比,77GHz雷达传感器在距离分辨率和精度方面的性能更好,经过测试发现可提高20倍。高距离分辨率可以更好地分离物体(例如站在汽车附近的人)并提供检测到物体的密集点,从而完善环境建模和物体分类,这对于研发先进的驾驶辅助算法和自动驾驶功能非常重要。

此外,分辨率越高,传感器识别的最小距离就越小,因此在停车辅助等需要高精确度的应用方面,77-81GHz雷达有着显著的优势。

第二个优势在速度分辨率和精度。速度分辨率和精度与射频频率成反比。 因此,频率越高,分辨率和精度就越好。与24 GHz传感器相比,77 GHz传感器可将速度分辨率和精度提高3倍。对于汽车停车辅助应用,速度分辨率和精度是至关重要的,因为在停车时需要以低速准确地操纵车辆。

 第三个优势是芯片设计尺寸的缩小。较高射频频率的主要优势之一就是传感器尺寸可以更小。对于相同的天线视场和增益,77GHz天线阵列的尺寸可以在X和Y维度上减小约3倍。这种尺寸上的缩减在汽车上非常有用,主要体现在汽车周围的应用(包括需要安装近距离传感器的门和后备箱)和车内的应用。

 但是毫米波雷达也存在一些不足,第一就是很难获得观测物体z坐标的数据,只能获得x轴和y轴的坐标,因此只能测距,无法输出图像信号。因此,xy与速度v信息只能得到一个3D的物体信息。第二,对横向目标敏感度低,例如:对横穿车辆检测效果不佳;第三,行人反射波较弱,对行人分辨率不高,探测距离近;第四,对高处物体和小物体的识别不佳。

如今毫米波雷达和Lidar都进入了4D识物的维度,毫米波雷达在努力完善自己对z轴坐标的获取,而Lidar则也凭借多普勒效应探测,可以获得物体速度信息。下图是Lidar获得的雷达点云图。

上文中也提到了,由于距离分辨率和精度与扫描带宽成反比,那么说明拥有更高扫描带宽的Lidar比毫米波雷达拥有更可靠的精度和探测距离。

我们坚信,未来的汽车自动驾驶技术不可能是单一技术独占的,一定是基于可见光视觉(CIS Camera)、毫米波雷达、超声波雷达、Lidar几种传感器相互配合的。本月初在台湾发生的Tesla迎面撞向翻倒卡车的案例,就足以证明了毫米波雷达在防撞预警上的缺陷。因为毫米波雷达无法识别图像,而Tesla的算法也把毫米波雷达探测到的静止的物体直接交给Camera Sensor去解析,以免造成算力的浪费。但Camera Sensor对于白色的图像解析一直是Tesla的弱项,在前几年美国弗罗里达的事故中,Tesla也把卡车的白色侧面当作了天空中的云。可见自动驾驶技术目前其实只实现到L2-L3的水平,离我们所期待额L4-L6还存在很大的差距。

在不久的将来,低成本、小型化、高可靠性的Lidar登上汽车的时候,我们的驾驶信赖性也会随着多种传感器技术的不断配合而做的越来越好。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/288043
推荐阅读
相关标签
  

闽ICP备14008679号