当前位置:   article > 正文

yolov5目标检测多线程C++部署_c语言的yolo5

c语言的yolo5

C++多线程复习

下面的代码搭建了简单的一个生产者-消费者模型,在capture()函数中进行入队操作,infer()函数中进行出队操作,为了模拟采图-推理流程,在函数中调用Sleep()函数延时。

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <windows.h>

std::queue<std::string> jobs;

void capture()
{
	int id = 0;
	while (true)
	{
		std::string name = std::to_string(id++) + ".jpg";
		std::cout << "capture: " << name << " jobs.size():" << jobs.size() << std::endl;
		jobs.push(name);
		Sleep(1000);
	}
}

void infer()
{
	while (true)
	{
		if (!jobs.empty())
		{
			auto pic = jobs.front();
			jobs.pop();
			std::cout <<"infer: "<< pic << std::endl;
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

输出结果:

capture: 0.jpg jobs.size():0
infer: 0.jpg
capture: 1.jpg jobs.size():0
infer: 1.jpg
capture: 2.jpg jobs.size():0
infer: 2.jpg
capture: 3.jpg jobs.size():0
infer: 3.jpg
capture: 4.jpg jobs.size():0
infer: 4.jpg
capture: 5.jpg jobs.size():0
infer: 5.jpg
capture: 6.jpg jobs.size():0
infer: 6.jpg
capture: 7.jpg jobs.size():0
infer: 7.jpg
capture: 8.jpg jobs.size():0
infer: 8.jpg
capture: 9.jpg jobs.size():0
infer: 9.jpg
capture: 10.jpg jobs.size():0
infer: 10.jpg
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

现在我们把capture函数中的Sleep(1000)改成Sleep(500)来模拟生产者加速生产,再次执行程序,则输出:

capture: 0.jpg jobs.size():0
infer: 0.jpg
capture: 1.jpg jobs.size():0
infer: 1.jpg
capture: 2.jpg jobs.size():0
capture: 3.jpg jobs.size():1
infer: 2.jpg
capture: 4.jpg jobs.size():1
capture: 5.jpg jobs.size():2
infer: 3.jpg
capture: 6.jpg jobs.size():2
capture: 7.jpg jobs.size():3
infer: 4.jpg
capture: 8.jpg jobs.size():3
capture: 9.jpg jobs.size():4
infer: 5.jpg
capture: 10.jpg jobs.size():4
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

此时发现采图-推理流程不能同步。为了解决这个问题,加入对队列长度的限制:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <windows.h>

std::queue<std::string> jobs;

const int limit = 3;

void capture()
{
	int id = 0;
	while (true)
	{
		std::string name = std::to_string(id++) + ".jpg";
		std::cout << "capture: " << name << " jobs.size():" << jobs.size() << std::endl;

		if(jobs.size()< limit)
			jobs.push(name);

		Sleep(500);
	}
}

void infer()
{
	while (true)
	{
		if (!jobs.empty())
		{
			auto pic = jobs.front();
			jobs.pop();
			std::cout <<"infer: "<< pic << std::endl;
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

此时输出结果:

capture: 0.jpg jobs.size():0
infer: 0.jpg
capture: 1.jpg jobs.size():0
infer: 1.jpg
capture: 2.jpg jobs.size():0
capture: 3.jpg jobs.size():1
infer: 2.jpg
capture: 4.jpg jobs.size():1
capture: 5.jpg jobs.size():2
infer: 3.jpg
capture: 6.jpg jobs.size():2
capture: 7.jpg jobs.size():3
infer: 4.jpg
capture: 8.jpg jobs.size():2
capture: 9.jpg jobs.size():3
infer: 5.jpg
capture: 10.jpg jobs.size():2
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

由于std::queue不是线程安全的数据结构,故引入锁std::mutex:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>


std::queue<std::string> jobs;

std::mutex lock;


void capture()
{
	int id = 0;
	while (true)
	{
		{
			std::unique_lock<std::mutex> l(lock);
			std::string name = std::to_string(id++) + ".jpg";
			std::cout << "capture: " << name << " " << "jobs.size(): " << jobs.size() << std::endl;
		}

		Sleep(500);
	}
}

void infer()
{ 
	while (true)
	{
		if (!jobs.empty())
		{
			{
				std::lock_guard<std::mutex> l(lock);
				auto job = jobs.front();
				jobs.pop();
				std::cout << "infer: " << job << std::endl;
			}
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

此时输出:

capture: 0.jpg jobs.size(): 0
capture: 1.jpg jobs.size(): 0
capture: 2.jpg jobs.size(): 0
capture: 3.jpg jobs.size(): 0
capture: 4.jpg jobs.size(): 0
capture: 5.jpg jobs.size(): 0
capture: 6.jpg jobs.size(): 0
capture: 7.jpg jobs.size(): 0
capture: 8.jpg jobs.size(): 0
capture: 9.jpg jobs.size(): 0
capture: 10.jpg jobs.size(): 0
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

有时候生产者还需要拿到消费者处理之后的结果,因此引入std::promise和std::condition_variable对程序进行完善:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>


struct Job
{
	std::string input;
	std::shared_ptr<std::promise<std::string>> pro;
};

std::queue<Job> jobs;

std::mutex lock;

std::condition_variable cv;

const int limit = 5;

void capture()
{
	int id = 0;
	while (true)
	{
		Job job;
		{
			std::unique_lock<std::mutex> l(lock);
			std::string name = std::to_string(id++) + ".jpg";
			std::cout << "capture: " << name << " " << "jobs.size(): " << qjobs.size() << std::endl;
			cv.wait(l, [&]() { return qjobs.size() < limit; });

			job.input = name;
			job.pro.reset(new std::promise<std::string>());
			jobs.push(job);
		}

		auto result = job.pro->get_future().get();
		std::cout << result << std::endl;

		Sleep(500);
	}
}

void infer()
{ 
	while (true)
	{
		if (!qjobs.empty())
		{
			{
				std::lock_guard<std::mutex> l(lock);
				auto job = jobs.front();
				jobs.pop();
				cv.notify_all();
				std::cout << "infer: " << job.input << std::endl;

				auto result = job.input + " after infer";
				job.pro->set_value(result);
			}
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

输出:

capture: 0.jpg jobs.size(): 0
infer: 0.jpg
0.jpg after infer
capture: 1.jpg jobs.size(): 0
infer: 1.jpg
1.jpg after infer
capture: 2.jpg jobs.size(): 0
infer: 2.jpg
2.jpg after infer
capture: 3.jpg jobs.size(): 0
infer: 3.jpg
3.jpg after infer
capture: 4.jpg jobs.size(): 0
infer: 4.jpg
4.jpg after infer
capture: 5.jpg jobs.size(): 0
infer: 5.jpg
5.jpg after infer
capture: 6.jpg jobs.size(): 0
infer: 6.jpg
6.jpg after infer
capture: 7.jpg jobs.size(): 0
infer: 7.jpg
7.jpg after infer
capture: 8.jpg jobs.size(): 0
infer: 8.jpg
8.jpg after infer
capture: 9.jpg jobs.size(): 0
infer: 9.jpg
9.jpg after infer
capture: 10.jpg jobs.size(): 0
infer: 10.jpg
10.jpg after infer
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

yolov5目标检测多线程C++部署

有了上面的基础,我们来写一个基本的目标检测多线程部署程序,为了简单起见选用OpenCV的dnn作为推理框架,出于篇幅限制下面只给出main.cpp部分:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


struct Job
{
	cv::Mat input_image;
	std::shared_ptr<std::promise<cv::Mat>> output_image;
};

std::queue<Job> jobs;

std::mutex lock;

std::condition_variable c_v;

const int limit = 10;

void capture(cv::VideoCapture cap)
{
	while (cv::waitKey(1) < 0)
	{
		Job job;
		cv::Mat frame;
		{
			cap.read(frame);
			if (frame.empty())
				break;

			std::unique_lock<std::mutex> l(lock);
			c_v.wait(l, [&]() { return jobs.size() < limit; });

			job.input_image = frame;
			job.output_image.reset(new std::promise<cv::Mat>());
			jobs.push(job);
		}

		cv::Mat result = job.output_image->get_future().get();

		cv::imshow("result", result);
	}
}

void infer(cv::dnn::Net net)
{ 
	while (true)
	{
		if (!jobs.empty())
		{
			std::lock_guard<std::mutex> l(lock);
			auto job = jobs.front();
			jobs.pop();
			c_v.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);
		}
	}
}


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test.mp4");

	cv::dnn::Net net = cv::dnn::readNet("yolov5n.onnx");

	std::thread t0(capture, cap);
	std::thread t1(infer, net);

	t0.join();
	t1.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90

接下来我们模拟多个模型同时推理,先给出单线程串行的程序:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test.mp4");

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	cv::Mat frame;
	while (cv::waitKey(1) < 0)
	{
		clock_t start = clock();

		cap.read(frame);
		if (frame.empty())
			break;

		cv::Mat input_image = frame, blob;
		pre_process(input_image, blob);

		std::vector<cv::Mat> network_outputs1, network_outputs2;
		process(blob, net1, network_outputs1);
		process(blob, net2, network_outputs2);

		cv::Mat output_image1, output_image2;
		post_process(input_image, output_image1, network_outputs1);
		post_process(input_image, output_image2, network_outputs2);

		clock_t end = clock();
		std::cout << end - start << "ms" << std::endl;

		cv::imshow("result1", output_image1);
		cv::imshow("result2", output_image2);
	}

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

输出结果:

infer1+infer2:191ms
infer1+infer2:142ms
infer1+infer2:134ms
infer1+infer2:130ms
infer1+infer2:129ms
infer1+infer2:124ms
infer1+infer2:124ms
infer1+infer2:121ms
infer1+infer2:124ms
infer1+infer2:122ms
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

多线程并行的写法修改如下:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


struct Job
{
	cv::Mat input_image;
	std::shared_ptr<std::promise<cv::Mat>> output_image;
};

std::queue<Job> jobs1,jobs2;

std::mutex lock1, lock2;

std::condition_variable cv1, cv2;

const int limit = 10;

void capture(cv::VideoCapture cap)
{
	while (cv::waitKey(1) < 0)
	{
		Job job1, job2;
		cv::Mat frame;

		clock_t start = clock();

		cap.read(frame);
		if (frame.empty())
			break;

		{
			std::unique_lock<std::mutex> l1(lock1);
			cv1.wait(l1, [&]() { return jobs1.size() < limit; });

			job1.input_image = frame;
			job1.output_image.reset(new std::promise<cv::Mat>());
			jobs1.push(job1);
		}

		{
			std::unique_lock<std::mutex> l2(lock2);
			cv2.wait(l2, [&]() { return jobs2.size() < limit; });

			job2.input_image = frame;
			job2.output_image.reset(new std::promise<cv::Mat>());
			jobs2.push(job2);
		}

		cv::Mat result1 = job1.output_image->get_future().get();
		cv::Mat result2 = job2.output_image->get_future().get();

		clock_t end = clock();
		std::cout <<"capture: "<< end - start << "ms" << std::endl;

		cv::imshow("result1", result1);
		cv::imshow("result2", result2);
	}
}

void infer1(cv::dnn::Net net)
{ 
	while (true)
	{
		if (!jobs1.empty())
		{
			clock_t start = clock();

			std::lock_guard<std::mutex> l1(lock1);
			auto job = jobs1.front();
			jobs1.pop();
			cv1.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);

			clock_t end = clock();
			std::cout << "infer1: " << end - start << "ms" << std::endl;
		}
	}
}

void infer2(cv::dnn::Net net)
{
	while (true)
	{
		if (!jobs2.empty())
		{
			clock_t start = clock();

			std::lock_guard<std::mutex> l2(lock2);
			auto job = jobs2.front();
			jobs2.pop();
			cv2.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);

			clock_t end = clock();
			std::cout << "infer2: " << end - start << "ms" << std::endl;
		}
	}
}


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test.mp4");
	//cap.open(0);

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	std::thread t0(capture, cap);
	std::thread t1(infer1, net1);
	std::thread t2(infer2, net2);

	t0.join();
	t1.join();
	t2.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145

输出:

infer1: 98ms
infer2: 136mscapture: 155ms

infer1: 80ms
infer2: 110ms
capture: 113ms
infer1: 92ms
infer2: 101mscapture: 103ms

infer1: 85ms
infer2: 97ms
capture: 100ms
infer1: 85ms
infer2: 100mscapture: 102ms
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

上面的程序还有一点小问题:视频播放完时程序无法正常退出。继续修正如下:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


struct Job
{
	cv::Mat input_image;
	std::shared_ptr<std::promise<cv::Mat>> output_image;
};

std::queue<Job> jobs1,jobs2;

std::mutex lock1, lock2;

std::condition_variable cv1, cv2;

const int limit = 10;

bool stop = false;

void print_time(int model_id)
{
	auto now = std::chrono::system_clock::now();
	uint64_t dis_millseconds = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count()
		- std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count() * 1000;
	time_t tt = std::chrono::system_clock::to_time_t(now);
	auto time_tm = localtime(&tt);
	char time[100] = { 0 };
	sprintf(time, "%d-%02d-%02d %02d:%02d:%02d %03d", time_tm->tm_year + 1900,
		time_tm->tm_mon + 1, time_tm->tm_mday, time_tm->tm_hour,
		time_tm->tm_min, time_tm->tm_sec, (int)dis_millseconds);
	std::cout << "model_id:" << std::to_string(model_id) << " 当前时间为:" << time << std::endl;
}

void capture(cv::VideoCapture cap)
{
	while (cv::waitKey(1) < 0)
	{
		Job job1, job2;
		cv::Mat frame;

		cap.read(frame);
		if (frame.empty())
		{
			stop = true;
			break;
		}

		{
			std::unique_lock<std::mutex> l1(lock1);
			cv1.wait(l1, [&]() { return jobs1.size()<limit; });

			job1.input_image = frame;
			job1.output_image.reset(new std::promise<cv::Mat>());
			jobs1.push(job1);
		}

		{
			std::unique_lock<std::mutex> l2(lock2);
			cv2.wait(l2, [&]() { return  jobs2.size() < limit; });

			job2.input_image = frame;
			job2.output_image.reset(new std::promise<cv::Mat>());
			jobs2.push(job2);
		}

		cv::Mat result1 = job1.output_image->get_future().get();
		cv::Mat result2 = job2.output_image->get_future().get();

		cv::imshow("result1", result1);
		cv::imshow("result2", result2);
	}
}

void infer1(cv::dnn::Net net)
{ 
	while (true)
	{
		if (stop)
			break; //不加线程无法退出

		if (!jobs1.empty())
		{
			std::lock_guard<std::mutex> l1(lock1);
			auto job = jobs1.front();
			jobs1.pop();
			cv1.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);
			print_time(1);
		}
		std::this_thread::yield(); //不加线程无法退出
	}
}

void infer2(cv::dnn::Net net)
{
	while (true)
	{
		if (stop)
			break;

		if (!jobs2.empty())
		{
			std::lock_guard<std::mutex> l2(lock2);
			auto job = jobs2.front();
			jobs2.pop();
			cv2.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);
			print_time(2);
		}
		std::this_thread::yield();
	}
}


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test1.mp4");

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	std::thread t0(capture, cap);
	std::thread t1(infer1, net1);
	std::thread t2(infer2, net2);

	t0.join();
	t1.join();
	t2.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158

输出结果:

model_id:1 当前时间为:2023-08-10 22:30:41 540
model_id:2 当前时间为:2023-08-10 22:30:41 567
model_id:1 当前时间为:2023-08-10 22:30:41 832
model_id:2 当前时间为:2023-08-10 22:30:41 864
model_id:1 当前时间为:2023-08-10 22:30:41 961
model_id:2 当前时间为:2023-08-10 22:30:41 980
model_id:1 当前时间为:2023-08-10 22:30:42 057
model_id:2 当前时间为:2023-08-10 22:30:42 087
model_id:1 当前时间为:2023-08-10 22:30:42 183
model_id:2 当前时间为:2023-08-10 22:30:42 187
model_id:1 当前时间为:2023-08-10 22:30:42 264
model_id:2 当前时间为:2023-08-10 22:30:42 291
model_id:2 当前时间为:2023-08-10 22:30:42 379
model_id:1 当前时间为:2023-08-10 22:30:42 388
model_id:2 当前时间为:2023-08-10 22:30:42 476
model_id:1 当前时间为:2023-08-10 22:30:42 485
model_id:2 当前时间为:2023-08-10 22:30:42 571
model_id:1 当前时间为:2023-08-10 22:30:42 584
model_id:1 当前时间为:2023-08-10 22:30:42 659
model_id:2 当前时间为:2023-08-10 22:30:42 685
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

多个视频不同模型同时推理:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


bool stop = false;

void print_time(std::string video)
{
	auto now = std::chrono::system_clock::now();
	uint64_t dis_millseconds = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count()
		- std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count() * 1000;
	time_t tt = std::chrono::system_clock::to_time_t(now);
	auto time_tm = localtime(&tt);
	char time[100] = { 0 };
	sprintf(time, "%d-%02d-%02d %02d:%02d:%02d %03d", time_tm->tm_year + 1900,
		time_tm->tm_mon + 1, time_tm->tm_mday, time_tm->tm_hour,
		time_tm->tm_min, time_tm->tm_sec, (int)dis_millseconds);
	std::cout << "infer " << video << " 当前时间为:" << time << std::endl;
}

void capture(std::string video, cv::dnn::Net net)
{
	cv::VideoCapture cap(video);
	while (cv::waitKey(1) < 0)
	{
		cv::Mat frame;
		cap.read(frame);

		if (frame.empty())
		{
			stop = true;
			break;
		}

		cv::Mat input_image = frame, blob, output_image;
		pre_process(input_image, blob);

		std::vector<cv::Mat> network_outputs;
		process(blob, net, network_outputs);

		post_process(input_image, output_image, network_outputs);

		print_time(video);
		cv::imshow(video, output_image);
	}
}


int main(int argc, char* argv[])
{
	std::string video1("test1.mp4");
	std::string video2("test2.mp4");

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	std::thread t1(capture, video1, net1);
	std::thread t2(capture, video2, net2);

	t1.join();
	t2.join();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72

推理效果如下:
在这里插入图片描述
完整工程下载链接:yolov5目标检测多线程C++部署
在下一篇文章yolov5目标检测多线程Qt界面中,我们会制作Qt界面来显示处理的结果。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/300222
推荐阅读
相关标签
  

闽ICP备14008679号