赞
踩
上一篇使用tensorflow实现了简单的线性回归,这次在简单的线性回归基础上,通过在权重和占位符声明中
修改来对相同的数据进行多元线性回归。
同样以波士顿房价数据为例
波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取。
1:导入需要的所有软件包
2:因各特征的数据范围不同,需要归一化特征数据,为此定义一个归一化函数
定义一个append_bias_reshape()函数,来将固定输入值和偏置结合起来
3:加载数据集,并划分为X_train,Y_train。注意X_train包含所需要的特征,可以选择在这里对数据
进行归一化处理。也可以添加偏置并对网络数据重构
4:为训练数据声明Tensorflow占位符,观测占位符X的形状变化
5:为权重和偏置创建Tensorflow变量。通过随机数初始化权重
6:定义要用于预测的线性回归模型,这个实例需要矩阵乘法来完成这个任务
7:定义损失函数
8:选择正确的优化器
9:定义初始化操作符
10:开始计算图
11绘制损失函数
12利用从模型学到的系数来预测房价
#1:导入所需要的软件包 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_boston tf.compat.v1.disable_eager_execution() ''' 使用Tensorflow实现多元线性回归 ''' #2:因为各特征的数据范围不同,需要归一化特征数据。为此定义一个归一化函数 #另外,这里添加一个额外的固定输入值将权重和偏置结合起来。 #为此定义函数append_bias_reshape()。该技巧可简化编程 def normalize(X): '''归一化数组 X''' ''' np.mean:计算均值 np.std:计算标准差 ''' mean = np.mean(X) std = np.std(X) X = (X-mean)/std return X def append_bias_reshape(features,labels): ''' param features: 对于矩阵来说,shape[0]:表示矩阵的行数 shape[1]:表示矩阵的列数 ''' m = features.shape[0] n = features.shape[1] ''' np.c_:按行将矩阵组合起来 ''' x = np.reshape(np.c_[np.ones(m),features],[m,n+1]) y = np.reshape(labels,[m,1]) return x,y #3:加载波士顿房价数据集,并划分为X_train,Y_train #可以选择这里对数据进行归一化处理,也可以添加偏置并对网络数据重构 boston = load_boston() X_train,Y_train = boston.data,boston.target X_train = normalize(X_train) X_train,Y_train = append_bias_reshape(X_train,Y_train) # 训练示例数 m = len(X_train) #特征+偏置的数量 n = 13+1 #4:为训练数据声明Tensorflow占位符,观测占位符X的形状变化 X = tf.compat.v1.placeholder(tf.float32,name='X',shape=[m,n]) Y = tf.compat.v1.placeholder(tf.float32,name='Y') #5:为权重和偏置创建Tensorflow变量,通过随机数初始化权重 w = tf.compat.v1.Variable(tf.random.normal([n,1])) b = tf.compat.v1.Variable(tf.zeros(1)) #6:定义用于预测的线性回归模型。需要矩阵乘法完成任务 Y_hat = tf.matmul(X,w) #7:为了更好的求微分,定义损失函数 loss = tf.reduce_mean(tf.square(Y-Y_hat,name='loss')) #8:选择正确的优化器 optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss) #9:定义初始化操作符 init_op = tf.compat.v1.global_variables_initializer() total = [] #10:开始计算图 with tf.compat.v1.Session() as sess: sess.run(init_op) writer = tf.compat.v1.summary.FileWriter('graphs2',sess.graph) for i in range(100): l = sess.run([optimizer,loss],feed_dict={X:X_train,Y:Y_train}) total.append(l) print('Epoch {0}:Loss {1}'.format(i,l)) writer.close() w_value,b_value = sess.run([w,b]) #11:绘制损失函数 plt.plot(total) plt.show() #12:从模型中学到的系数来预测房价 N = 500 X_new = X_train[N,:] Y_pred = (np.matmul(X_new,w_value)+b_value).round(1) print('Predicted value:${0} Actual value: / ${1}'.format(Y_pred[0]*1000,Y_train[N]*1000,'\nDone'))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。