赞
踩
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jul 25 10:04:39 2017
- @author: mnist_inference.py
- """
-
- import tensorflow as tf
-
- #定义神经网络结构相关的参数
- INPUT_NODE = 784
- OUTPUT_NODE = 10
- LAYER1_NODE = 500
-
- def get_weight_variable(shape, regularizer):
- weights = tf.get_variable("weights",shape,
- initializer = tf.truncated_normal_initializer(stddev=0.1))
- if regularizer !=None:
- tf.add_to_collection("losses", regularizer(weights))
- return weights
-
-
- #定义神经网络前向传播过程
- def inference(input_tensor, regularizer):
- #声明第一层神经网络的变量并完成前向传播过程
- with tf.variable_scope('layer1'):
- weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
- biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
- layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
-
- #声明第二层神经网络的变量并完成前向传播过程
- with tf.variable_scope('layer2' ):
- weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
- biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
- layer2 = tf.matmul(layer1,weights) + biases
-
- #返回最后前向传播的结果
- return layer2
-
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jul 25 14:00:16 2017
- @author: mnist_train.py
- """
-
- import os
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
-
- #加载mnist_inference.py中定义的常量和前向传播的函数
- import mnist_inference
-
- #配置神经网络的参数
- BATCH_SIZE = 100
- LEARNING_RATE_BASE = 0.8
- LEARNING_RATE_DECAY = 0.99
- REGULARAZTION_RATE = 0.0001
- TRAINING_STEPS = 30000
- MOVING_AVERAGE_DECAY = 0.99
- #模型保存的路径和文件名
- MODEL_SAVE_PATH = r"C:\Users\alienware\Desktop\mnist2\ckpt"
- MODEL_NAME = "model.ckpt"
-
- def train(mnist):
- #定义输入输出placeholder
- x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE] , name = 'x-input')
- y_ = tf.placeholder(tf.float32,[None, mnist_inference.OUTPUT_NODE] , name = 'y-input')
-
- regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
- #前向传播
- y = mnist_inference.inference(x, regularizer)
- global_step = tf.Variable(0, trainable=False)
-
- #定义损失函数、学习率、滑动平滑操作以及训练过程
- variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
- variable_averages_op = variable_averages.apply(tf.trainable_variables())
- cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(y_,1))
- cross_entropy_mean = tf.reduce_mean(cross_entropy)
- loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
- learning_rate = tf.train.exponential_decay(
- LEARNING_RATE_BASE,
- global_step,
- mnist.train.num_examples/BATCH_SIZE,
- LEARNING_RATE_DECAY)
- train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
- with tf.control_dependencies([train_step, variable_averages_op]):
- train_op = tf.no_op(name='train')
-
- #初始化tensor持久化类
- saver = tf.train.Saver()
- with tf.Session() as sess:
- tf.initialize_all_variables().run()
-
- for i in range(TRAINING_STEPS):
- xs,ys = mnist.train.next_batch(BATCH_SIZE)
- _,loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x:xs, y_:ys})
-
- #每1000轮保存一次模型
- if i % 1000 == 0:
- #输出当前的训练情况
- print("After %d training step(s), loss on training "
- "batch is %g." % (step, loss_value))
- saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
-
- def main(argv=None):
- mnist = input_data.read_data_sets(r"F:\Tensor\MNIST_data", one_hot=True)
- train(mnist)
-
- if __name__ == '__main__':
- tf.app.run()
-
Extracting F:\Tensor\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\Tensor\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\Tensor\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\Tensor\MNIST_data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:/Users/alienware/Desktop/mnist2/mnist_train.py:54: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
After 1 training step(s), loss on training batch is 2.92491.
After 1001 training step(s), loss on training batch is 0.203112.
After 2001 training step(s), loss on training batch is 0.144644.
After 3001 training step(s), loss on training batch is 0.128094.
After 4001 training step(s), loss on training batch is 0.115793.
After 5001 training step(s), loss on training batch is 0.116484.
After 6001 training step(s), loss on training batch is 0.103938.
After 7001 training step(s), loss on training batch is 0.0879508.
After 8001 training step(s), loss on training batch is 0.0801202.
After 9001 training step(s), loss on training batch is 0.0764782.
After 10001 training step(s), loss on training batch is 0.0709977.
After 11001 training step(s), loss on training batch is 0.0680732.
After 12001 training step(s), loss on training batch is 0.0609194.
- # -*- coding: utf-8 -*-
- """
- Created on Wed Jul 26 13:58:24 2017
- @author: mnist_eval.py
- """
-
- import time
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
-
- #加载mnist_inference.py和mnist_train.py中定义的常量和函数
- import mnist_inference
- import mnist_train
-
- #每10秒加载一次最新的模型, 并在测试数据上测试最新的正确率
- EVAL_INTERVAL_SECS = 10
-
- def evaluate(mnist):
- with tf.Graph().as_default() as g:
- #定义输入输出的格式
- x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
- y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
- validate_feed = {x:mnist.validation.images,
- y_:mnist.validation.labels}
- #前向传播
- y = mnist_inference.inference(x,None)
- #使用前向传播的结果计算正确率
- correct_prediction = tf.equal(tf.arg_max(y,1), tf.arg_max(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
-
- #通过变量重命名的方式来加载模型
- variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
- variables_to_restore = variable_averages.variables_to_restore()
- saver = tf.train.Saver(variables_to_restore)
-
- #每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检测训练过程中正确率的变化
- while True:
- with tf.Session() as sess:
- ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
- if ckpt and ckpt.model_checkpoint_path:
- #加载模型
- saver.restore(sess, ckpt.model_checkpoint_path)
- #通过文件名得到模型保存时迭代的轮数
- global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
- accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
- print("After %s training step(s), validation ""accuracy = %g" % (global_step, accuracy_score))
- else:
- print('No checkpoint file found')
- return
- time.sleep(EVAL_INTERVAL_SECS)
-
- def main(argv=None):
- mnist = input_data.read_data_sets(r"F:\Tensor\MNIST_data", one_hot=True)
- evaluate(mnist)
-
- if __name__ == '__main__':
- tf.app.run()
执行测试过程:
Extracting F:\Tensor\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\Tensor\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\Tensor\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\Tensor\MNIST_data\t10k-labels-idx1-ubyte.gz
INFO:tensorflow:Restoring parameters from C:\Users\alienware\Desktop\mnist2\ckpt\model.ckpt-29001
After 29001 training step(s), validation accuracy = 0.9854
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。