赞
踩
清华大学的Top 100 GNN papers,其中分了十个方向,每个方向10篇。此篇为自监督学习与预训练方向的阅读笔记。
Top100值得一读的图神经网络| 大家好,我是蘑菇先生,今天带来Top100 GNN Papers盘点文。此外,公众号技术交流群开张啦!可https://mp.weixin.qq.com/s?__biz=MzIyNDY5NjEzNQ==&mid=2247491631&idx=1&sn=dfa36e829a84494c99bb2d4f755717d6&chksm=e809a207df7e2b1117578afc86569fa29ee62eb883fd35428888c0cc0be750faa5ef091f9092&mpshare=1&scene=23&srcid=1026NUThrKm2Vioj874F3gqS&sharer_sharetime=1635227630762&sharer_shareid=80f244b289da8c80b67c915b10efd0a8#rd
架构篇连接:TOP 100值得读的图神经网络----架构_tagagi的博客-CSDN博客https://blog.csdn.net/tagagi/article/details/121318308
目录
一、图神经网络预训练的策略 STRATEGIES FORPRE-TRAININGGRAPHNEURAL NETWORKS
三、GraphSAGE大型图的归纳表示学习 Inductive Representation Learning on Large Graphs
五、GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
六、多视图对比学习 Contrastive multi-view representation learning on graphs
七、GraphCL Graph Contrastive Learning with Augmentations
八、GPT-GNN: Generative Pre-Training of Graph Neural Networks
九、When Does Self-Supervision Help Graph Convolutional Networks?
十、GRACE Deep Graph Contrastive Representation Learning
主要内容:提出了一种图神经网络的预训练方法,在ROC-AUC曲线上得到了11.7%的绝对值提升
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。