赞
踩
import torch import torchvision from torch import nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import time # 将model文件夹中有的东西都引入过来 # from model import * # 准备数据集 train_data = torchvision.datasets.CIFAR10("data", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10("data", train=False, transform=torchvision.transforms.ToTensor(), download=True) # 看一下训练数据集和测试数据集有多少张 len-length 长度 train_data_size = len(train_data) test_data_size = len(test_data) # python中常用的写法:字符串格式化 print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size)) # 用DataLoader加载数据集 train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 搭建神经网络 class Peipei(nn.Module): def __init__(self): super(Peipei, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * 4 * 4, 64), nn.Linear(64, 10) ) def forward(self, x): x = self.model(x) return x # 创建网络模型 peipei = Peipei() if torch.cuda.is_available(): peipei = peipei.cuda() # 创建损失函数 loss_fn = nn.CrossEntropyLoss() if torch.cuda.is_available(): loss_fn = loss_fn.cuda() # 定义优化器 # 1e-2 = 0.01 learning_rate = 1e-2 optimizer = torch.optim.SGD(peipei.parameters(), lr=learning_rate) # 设置训练网络的一些参数 # 记录训练次数 total_train_step = 0 # 记录测试次数 total_test_step = 0 # 训练的轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("logs_train") start_time = time.time() # i从0-9 for i in range(epoch): print("--------------------第{}轮训练开始--------------------".format(i + 1)) # 训练步骤开始 # 使模型进入训练状态,但只对特定层(Dropout,BatchNorm层)起作用 peipei.train() for data in train_dataloader: imgs, targets = data if torch.cuda.is_available(): imgs = imgs.cuda() targets = targets.cuda() outputs = peipei(imgs) # 计算损失函数 loss = loss_fn(outputs, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step = total_train_step + 1 if total_train_step % 100 == 0: end_time = time.time() print(end_time-start_time) print("训练次数:{},loss:{}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 # 使模型进入验证状态,但只对特定层(Dropout,BatchNorm层)起作用 peipei.eval() total_test_loss = 0 totel_accuracy = 0 with torch.no_grad(): for data in test_dataloader: imgs, targets = data if torch.cuda.is_available(): imgs = imgs.cuda() targets = targets.cuda() outputs = peipei(imgs) loss = loss_fn(outputs, targets) # 计算整体测试集损失函数 total_test_loss = total_test_loss + loss.item() # 计算整体正确率 accuracy = (outputs.argmax(1) == targets).sum() totel_accuracy = totel_accuracy + accuracy print("整体测试集上的Loss:{}".format(total_test_loss)) print("整体测试集上的正确率:{}".format(totel_accuracy / test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", totel_accuracy / test_data_size, total_test_step) total_test_step = total_test_step + 1 # 对每轮训练完的模型保存 torch.save(peipei, "peipei_{}.pth".format(i)) torch.save(peipei.state_dict(), "peipei_{}.pth".format(i)) writer.close()
CPU
GPU
import torchvision from torch import nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import time # 将model文件夹中有的东西都引入过来 # from model import * # 定义训练的设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 准备数据集 train_data = torchvision.datasets.CIFAR10("data", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10("data", train=False, transform=torchvision.transforms.ToTensor(), download=True) # 看一下训练数据集和测试数据集有多少张 len-length 长度 train_data_size = len(train_data) test_data_size = len(test_data) # python中常用的写法:字符串格式化 print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size)) # 用DataLoader加载数据集 train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 搭建神经网络 class Peipei(nn.Module): def __init__(self): super(Peipei, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * 4 * 4, 64), nn.Linear(64, 10) ) def forward(self, x): x = self.model(x) return x # 创建网络模型 peipei = Peipei() peipei = peipei.to(device) # 创建损失函数 loss_fn = nn.CrossEntropyLoss() loss_fn = loss_fn.to(device) # 定义优化器 # 1e-2 = 0.01 learning_rate = 1e-2 optimizer = torch.optim.SGD(peipei.parameters(), lr=learning_rate) # 设置训练网络的一些参数 # 记录训练次数 total_train_step = 0 # 记录测试次数 total_test_step = 0 # 训练的轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("logs_train") start_time = time.time() # i从0-9 for i in range(epoch): print("--------------------第{}轮训练开始--------------------".format(i + 1)) # 训练步骤开始 # 使模型进入训练状态,但只对特定层(Dropout,BatchNorm层)起作用 peipei.train() for data in train_dataloader: imgs, targets = data imgs = imgs.to(device) targets = targets.to(device) outputs = peipei(imgs) # 计算损失函数 loss = loss_fn(outputs, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step = total_train_step + 1 if total_train_step % 100 == 0: end_time = time.time() print(end_time - start_time) print("训练次数:{},loss:{}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 # 使模型进入验证状态,但只对特定层(Dropout,BatchNorm层)起作用 peipei.eval() total_test_loss = 0 totel_accuracy = 0 with torch.no_grad(): for data in test_dataloader: imgs, targets = data imgs = imgs.to(device) targets = targets.to(device) outputs = peipei(imgs) loss = loss_fn(outputs, targets) # 计算整体测试集损失函数 total_test_loss = total_test_loss + loss.item() # 计算整体正确率 accuracy = (outputs.argmax(1) == targets).sum() totel_accuracy = totel_accuracy + accuracy print("整体测试集上的Loss:{}".format(total_test_loss)) print("整体测试集上的正确率:{}".format(totel_accuracy / test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", totel_accuracy / test_data_size, total_test_step) total_test_step = total_test_step + 1 # 对每轮训练完的模型保存 torch.save(peipei, "peipei_{}.pth".format(i)) torch.save(peipei.state_dict(), "peipei_{}.pth".format(i)) writer.close()
GPU
CPU
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。