赞
踩
本次任务是进行气温预测,数据集链接https://www.kaggle.com/datasets/ns0720/tempscsv,数据集下载有困难的评论区留言,作为全面学习PyTorch实战的第一章,我们会使用比较原始的方法写整个训练过程,除了反向传播由PyTorch代码调用自行计算。
数据集是csv文件,他饱含9列,按顺序分别是year,month,day,week,temp_1,temp_2,average,actual,friend。我们的训练数据集为除了actual的所有列,训练数据集的标签为actual。数据的预处理我们展示在代码中。
注意代码执行环境要在PredictionTemps目录下,否则会报temps.csv文件找不到。
from ast import increment_lineno from audioop import bias from calendar import month import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.optim as optim import warnings warnings.filterwarnings("ignore") # %matplotlib inline #数据读取 features = pd.read_csv('temps.csv') #查看数据 print(features.head()) print("数据维度", features.shape) #处理数据,转换时间类型 import datetime #年,月,日 years = features['year'] months = features['month'] days = features['day'] # datetime格式 dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)] dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates] # 查看数据格式 print(dates[:5]) # week列为字符串不是数值,利用独热编码,将数据中非字符串转换为数值,并拼接到数据中 features = pd.get_dummies(features) # 看独热编码的效果 print(features.head(5)) # 标签 labels = np.array(features['actual']) # 去掉标签用作特征 features = features.drop('actual', axis=1) # 保存列名用于展示 features_list = list(features.columns) # 转换为合适的格式 features = np.array(features) print(features.shape) # 数据标准化 from sklearn import preprocessing input_features = preprocessing.StandardScaler().fit_transform(features) # 看一下数字标准化的效果 print(input_features[0])
接下来构建神经网络模型,首先使用原始的方法
# 将输入和预测转为tensor x = torch.tensor(input_features, dtype=float) y = torch.tensor(labels,dtype=float) # 权重参数初始化 weights = torch.randn((14, 128), dtype= float, requires_grad= True) biases = torch.randn(128, dtype=float, requires_grad= True) weights2 = torch.randn((128, 1), dtype=float, requires_grad= True) biases2 = torch.randn(1, dtype=float, requires_grad=True) learning_rate = 0.001 losses = [] for i in range(1000): # 前向传播 # 计算隐藏层 hidden = x.mm(weights) + biases # 加入激活函数 hidden = torch.relu(hidden) # 预测结果 predictions = hidden.mm(weights2) + biases2 # 计算损失 loss = torch.mean((predictions - y)**2) losses.append(loss.data.numpy()) # 打印损失 if i % 100 == 0: print('loss:', loss) # 反向传播 loss.backward() # 更新参数 weights.data.add_(- learning_rate * weights.grad.data) biases.data.add_(- learning_rate * biases.grad.data) weights2.data.add_(- learning_rate * weights2.grad.data) biases2.data.add_(- learning_rate * biases2.grad.data) # 梯度清零 weights.grad.data.zero_() biases.grad.data.zero_() weights2.grad.data.zero_() biases2.grad.data.zero_()
训练结果
loss: tensor(3511.3141, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(154.7521, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.5845, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(144.1342, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(142.9047, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(142.1384, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(141.5937, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(141.1904, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(140.8811, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(140.6381, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss稳步下降
或者我们使用简化的方法
input_size = input_features.shape[1] hidden_size = 128 output_size = 1 batch_size = 16 my_nn = torch.nn.Sequential( torch.nn.Linear(input_size, hidden_size), torch.nn.Sigmoid(), torch.nn.Linear(hidden_size, output_size), ) # 指定损失函数 cost = torch.nn.MSELoss(reduction='mean') # 指定优化器 optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.001) # 训练网络 losses = [] for i in range(1000): batch_loss = [] for start in range(0, len(input_features), batch_size): end = start + batch_size if start + batch_size < len(input_features) else len(input_features) xx = torch.tensor(input_features[start:end], dtype=torch.float, requires_grad=True) yy = torch.tensor(labels[start:end], dtype=torch.float, requires_grad=True) prediction = my_nn(xx) loss = cost(prediction, yy) optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() batch_loss.append(loss.data.numpy()) if i % 100 == 0: losses.append(np.mean(batch_loss)) print(i, np.mean(batch_loss))
最终我们进行预测,并以图片的形式展示
# 预测结果 x = torch.tensor(input_features, dtype=torch.float) predict = my_nn(x).data.numpy() # 转化为numpy格式,tensor格式画不了图 # 转换日期格式 dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)] dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates] # 创建一个表格来保存日期和其对应的标签数值 true_data = pd.DataFrame(data={'date': dates, 'actual': labels}) # 再创建一个来存日期和其对应的模型预测值 months = features[:, features_list.index('month')] days = features[:, features_list.index('day')] years = features[:, features_list.index('year')] test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)] test_dates = dates predictions_data = pd.DataFrame(data={'date': test_dates, 'prediction': predict.reshape(-1)}) # 真实值 plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual') # 预测值 plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label='prediction') plt.xticks(rotation='vertical'); plt.legend() # 图名 plt.xlabel('Date') plt.ylabel('Maximum Temperature (F)') plt.title('Actual and Predicted Values') plt.show()
结果展示:
说明:代码执行中所需要的包请自行pip install xx下载
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。