当前位置:   article > 正文

C# OpenCvSharp Yolov8 Detect 目标检测_yolo 8 c#

yolo 8 c#

目录

效果

模型信息

项目

代码

下载 


效果

模型信息

Model Properties
-------------------------
date:2023-09-05T13:17:15.396588
description:Ultralytics YOLOv8n model trained on coco.yaml
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.170
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 84, 8400]
---------------------------------------------------------------

项目

代码

//缩放图片
max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));

factors[0] = factors[1] = (float)(max_image_length / 640.0);

//数据归一化处理
BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);

//配置图片输入数据
opencv_net.SetInput(BN_image);

dt1 = DateTime.Now;
//模型推理,读取推理结果
result_mat = opencv_net.Forward();
dt2 = DateTime.Now;

//将推理结果转为float数据类型
result_mat_to_float = new Mat(8400, 84, MatType.CV_32F, result_mat.Data);

//将数据读取到数组中
result_mat_to_float.GetArray<float>(out result_array);

  1. using OpenCvSharp;
  2. using OpenCvSharp.Dnn;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.ComponentModel;
  6. using System.Data;
  7. using System.Drawing;
  8. using System.Linq;
  9. using System.Text;
  10. using System.Windows.Forms;
  11. namespace OpenCvSharp_Yolov8_Demo
  12. {
  13. public partial class Form1 : Form
  14. {
  15. public Form1()
  16. {
  17. InitializeComponent();
  18. }
  19. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  20. string image_path = "";
  21. string startupPath;
  22. string classer_path;
  23. DateTime dt1 = DateTime.Now;
  24. DateTime dt2 = DateTime.Now;
  25. string model_path;
  26. Mat image;
  27. DetectionResult result_pro;
  28. Mat result_mat;
  29. Mat result_image;
  30. Mat result_mat_to_float;
  31. Net opencv_net;
  32. Mat BN_image;
  33. float[] result_array;
  34. float[] factors;
  35. int max_image_length;
  36. Mat max_image;
  37. Rect roi;
  38. Result result;
  39. StringBuilder sb = new StringBuilder();
  40. private void Form1_Load(object sender, EventArgs e)
  41. {
  42. startupPath = System.Windows.Forms.Application.StartupPath;
  43. model_path = startupPath + "\\yolov8n.onnx";
  44. classer_path = startupPath + "\\yolov8-detect-lable.txt";
  45. //初始化网络类,读取本地模型
  46. opencv_net = CvDnn.ReadNetFromOnnx(model_path);
  47. result_array = new float[8400 * 84];
  48. factors = new float[2];
  49. }
  50. private void button1_Click(object sender, EventArgs e)
  51. {
  52. OpenFileDialog ofd = new OpenFileDialog();
  53. ofd.Filter = fileFilter;
  54. if (ofd.ShowDialog() != DialogResult.OK) return;
  55. pictureBox1.Image = null;
  56. image_path = ofd.FileName;
  57. pictureBox1.Image = new Bitmap(image_path);
  58. textBox1.Text = "";
  59. image = new Mat(image_path);
  60. pictureBox2.Image = null;
  61. }
  62. private void button2_Click(object sender, EventArgs e)
  63. {
  64. if (image_path == "")
  65. {
  66. return;
  67. }
  68. //缩放图片
  69. max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
  70. max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  71. roi = new Rect(0, 0, image.Cols, image.Rows);
  72. image.CopyTo(new Mat(max_image, roi));
  73. factors[0] = factors[1] = (float)(max_image_length / 640.0);
  74. //数据归一化处理
  75. BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);
  76. //配置图片输入数据
  77. opencv_net.SetInput(BN_image);
  78. dt1 = DateTime.Now;
  79. //模型推理,读取推理结果
  80. result_mat = opencv_net.Forward();
  81. dt2 = DateTime.Now;
  82. //将推理结果转为float数据类型
  83. result_mat_to_float = new Mat(8400, 84, MatType.CV_32F, result_mat.Data);
  84. //将数据读取到数组中
  85. result_mat_to_float.GetArray<float>(out result_array);
  86. result_pro = new DetectionResult(classer_path, factors);
  87. result = result_pro.process_result(result_array);
  88. result_image = result_pro.draw_result(result, image.Clone());
  89. if (!result_image.Empty())
  90. {
  91. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
  92. sb.Clear();
  93. sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
  94. sb.AppendLine("------------------------------");
  95. for (int i = 0; i < result.length; i++)
  96. {
  97. sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
  98. , result.classes[i]
  99. , result.scores[i].ToString("0.00")
  100. , result.rects[i].TopLeft.X
  101. , result.rects[i].TopLeft.Y
  102. , result.rects[i].BottomRight.X
  103. , result.rects[i].BottomRight.Y
  104. ));
  105. }
  106. textBox1.Text = sb.ToString();
  107. }
  108. else
  109. {
  110. textBox1.Text = "无信息";
  111. }
  112. }
  113. }
  114. }

下载 

Demo下载

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/359303
推荐阅读
相关标签
  

闽ICP备14008679号