赞
踩
这里使用tensorflow 2.8版本和LeNet-5模型在mnist手写数字数据集上进行各种优化器的效率比较。为了展示现代优化器(在 TensorFlow 和 Keras 中的优化器)对训练的影响,我们将创建几个 LeNet 实例,并使用不同的优化器训练每个实例。
- import tensorflow as tf
- import numpy as np
- import matplotlib
- from matplotlib import pyplot as plt
-
- num_classes = 10
- img_rows, img_cols, img_ch = 28, 28, 1
- input_shape = (img_rows, img_cols, img_ch)
-
- (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
- x_train, x_test = x_train / 255.0, x_test / 255.0
-
- x_train = x_train.reshape(x_train.shape[0], *input_shape)
- x_test = x_test.reshape(x_test.shape[0], *input_shape)
-
- print('Training data: {}'.format(x_train.shape))
- print('Testing data: {}'.format(x_test.shape))

- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
-
- def lenet(name&
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。