赞
踩
Pytorch允许把在GPU上训练的模型加载到CPU上,也允许把在CPU上训练的模型加载到GPU上。
首先需要判断自己的pytorch是否能够使用GPU计算:
print(torch.cuda.is_available())
如果输出False的话,要重新配置cuda环境,这里就不仔细说明了。
然后,明确什么东西可以使用GPU训练,一般来说包括网络模型、数据(输入、标注)、损失函数,主要有以下两种方法:
方法1:使用.to(device)方法
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
inputs, labels = inputs.to(device), labels.to(device)
loss_fn = loss_fn.to(device)
方法2:使用.cuda()方法
if torch.cuda.is_available():
net.cuda()
if torch.cuda.is_available():
inputs, labels = inputs.cuda(), labels.cuda()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
使用方法2调用cuda进行训练的一个案例,方法1同理。
import time import torch import torchvision.datasets from torch import nn from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter # from model import * # 准备数据集 train_data = torchvision.datasets.CIFAR10("./dataset_cifar10/train", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10("./dataset_cifar10/test", train=False, transform=torchvision.transforms.ToTensor(), download=True) # 利用DataLoader加载数据集 train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 创建网络模型 class Lyon(nn.Module): def __init__(self): super(Lyon, self).__init__() self.model1 = Sequential( Conv2d(3, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): x = self.model1(x) return x lyon = Lyon() if torch.cuda.is_available(): lyon = lyon.cuda() # 损失函数 loss_fn = nn.CrossEntropyLoss() if torch.cuda.is_available(): loss_fn = loss_fn.cuda() # 优化器 learning_rate = 0.01 optimizer = torch.optim.SGD(lyon.parameters(), lr=learning_rate) # 设置训练网络的一些参数 # 记录训练次数 total_train_step = 0 # 记录训练次数 total_test_step = 0 # 训练轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("./logs/train") start_time = time.time() for i in range(epoch): print("----- 第 {} 轮训练开始 -----".format(i + 1)) # 训练步骤开始 lyon.train() # 可以不写 for data in train_dataloader: imgs, targets = data if torch.cuda.is_available(): imgs = imgs.cuda() targets = targets.cuda() output = lyon(imgs) loss = loss_fn(output, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step = total_train_step + 1 if total_train_step % 100 == 0: end_time = time.time() print(end_time - start_time) print("训练次数:{},Loss:{}".format(total_train_step, loss)) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 lyon.eval() # 评估步骤开始,可以不写 total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): for data in test_dataloader: imgs, targets = data if torch.cuda.is_available(): imgs = imgs.cuda() targets = targets.cuda() outputs = lyon(imgs) loss = loss_fn(outputs, targets) accuracy = (outputs.argmax(1) == targets).sum() # outputs.argmax(1)将输出结果转换为targets的模式 total_test_loss = total_test_loss + loss.item() total_accuracy = total_accuracy + accuracy print("整体测试集上的Loss:{}".format(total_test_loss)) print("整体测试集上的正确率:{}".format(total_accuracy)) writer.add_scalar("test_loss", total_test_loss, total_test_step) total_test_step = total_test_step + 1 torch.save(lyon, "./train_model/lyon_{}.pth".format(i)) # 官方推荐模型保存方式 # torch.save(lyon.state_dict(), "./lyon_{}.pth".format(i)) print("模型已保存!") writer.close()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。