赞
踩
完整源码:https://download.csdn.net/download/bibinGee/12278566
YOLO相关原理及数据集可以通过这个链接查看:https://pjreddie.com/darknet/yolo/
本博文将介绍使用YOLO结合opencv进行目标检测,需要用到的的资源有coco.names/yolov3.cfg/yolov3.weights,这些文件都可以从darknet或者github上找到。GitHub资源通过这个链接找到:https://github.com/pjreddie/darknet
- coco.names
- yolov3.cfg
- yolov3.weight
需要用的python库有:
- import numpy as np
- import argparse
- import imutils
- import time
- import cv2
- import os
项目的文件结构如下:
首先加载yolov3.weight和yolov3.cfg文件
-
- # derive the paths to the YOLO weights and model configuration
- weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
- configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
-
- # load our YOLO object detector trained on COCO dataset (80 classes)
- print("[INFO] loading YOLO from disk...")
- net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
这里用到了opencv中的 dnn.readNetFromDarknet(),这个是opencv提供的深度神经网络学习的函数,有意思的是它似乎专门给darknet框架写的,如下关于这个函数的注释。
- ""
- readNetFromDarknet(cfgFile[, darknetModel]) -> retval
- . @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- . * @param cfgFile path to the .cfg file with text description of the network architecture.
- . * @param darknetModel path to the .weights file with learned network.
- . * @returns Network object that ready to do forward, throw an exception in failure cases.
- . * @returns Net object.
- ""
接着对输入的图像进行预处理:
- blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
- net.setInput(blob)
这里用到blogFormImage()这个函数,这个函数主要执行下面3个功能:
- 1. 均值减法
- 2. 缩放
- 3. 频道交换
下面就可以对输入的图像进行分类识别了:
- # loop over each of the layer outputs
- for output in layerOutputs:
- # loop over each of the detections
- for detection in output:
- # extract the class ID and confidence (i.e., probability) of
- # the current object detection
- scores = detection[5:]
- classID = np.argmax(scores)
- confidence = scores[classID]
-
- # filter out weak predictions by ensuring the detected
- # probability is greater than the minimum probability
- if confidence > args["confidence"]:
- # scale the bounding box coordinates back relative to the
- # size of the image, keeping in mind that YOLO actually
- # returns the center (x, y)-coordinates of the bounding
- # box followed by the boxes' width and height
- box = detection[0:4] * np.array([W, H, W, H])
- (centerX, centerY, width, height) = box.astype("int")
-
- # use the center (x, y)-coordinates to derive the top and
- # and left corner of the bounding box
- x = int(centerX - (width / 2))
- y = int(centerY - (height / 2))
-
- # update our list of bounding box coordinates, confidences,
- # and class IDs
- boxes.append([x, y, int(width), int(height)])
- confidences.append(float(confidence))
- classIDs.append(classID)
完成后就可以将目标标注出来了:
- # ensure at least one detection exists
- if len(idxs) > 0:
- # loop over the indexes we are keeping
- for i in idxs.flatten():
- # extract the bounding box coordinates
- (x, y) = (boxes[i][0], boxes[i][1])
- (w, h) = (boxes[i][2], boxes[i][3])
-
- # draw a bounding box rectangle and label on the image
- color = [int(c) for c in COLORS[classIDs[i]]]
- print(color)
- cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
- text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
- cv2.putText(image, text, (x, y - 5), cv2.FONT_ITALIC, 0.5, [0, 0, 0], 2)
下面是利用yolo提供的数据集和图像例子识别出来的目标,准确率还很高。
然而事情也不是一帆风顺,当输入不在训练好的数据的目标的时,就会识别出错,比如下面两位仁兄就很搞笑了,关键时给出的准确度去到了99%和88%,不得不说有一个专用的训练集真的很重要。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。