赞
踩
本文通过使用一小部分的中文语料,训练一个Bigrams模型,然后使用Bigrams模型以自回归的方式生成一段中文文本,纯粹为了学习和娱乐,因为Bigrams为了得到较好的结果一般需要数以亿计的词汇才可以,本文采用的训练数据约10k+。
Bigrams(二元语法模型),是一种简单易实现但实际应用价值有限的统计语言模型,是N-gram的一个特例。在给定一个前置字符的情况下,计算出二元组合(词)的概率:
P ( W n ∣ W n − 1 ) = P ( W n − 1 , W n ) P ( W n − 1 ) = W n − 1 , W n 同时出现的概率 W n − 1 单独出现的概率 P(W_n|W_{n-1}) = \frac{P(W_{n-1}, W_n)}{P(W_{n-1})} = \frac{W_{n-1},W_n同时出现的概率}{W_{n-1}单独出现的概率} P(Wn∣Wn−1)=P(Wn−1)P(Wn−1,Wn)=Wn−1单独出现的概率Wn−1,Wn同时出现的概率
即:在给定前一个字符 W n − 1 W_{n-1} Wn−1的前提下,出现某个字符 W n W_n Wn的概率 P ( W n ) P(W_n) P(Wn)与它们构成的二元组合概率相同。
import os
import time
import pandas as pd
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
数据来自10k+外卖评价数据:
data = pd.read_csv('./dataset/waimai_10k.csv')
data.dropna(subset='review',inplace=True)
data['review_length'] = data.review.apply(lambda x:len(x))
data.sample(5)
label | review | review_length | |
---|---|---|---|
7324 | 0 | 等的花儿都谢了 | 7 |
8309 | 0 | 速度快,味道一般 | 8 |
8979 | 0 | 冷面套餐只有一碗面?难道我记错了?有点凉了,第一次点外卖,不是很满意。 | 35 |
6517 | 0 | 2个小时送到的,气都不想生了,自己看着办吧 | 21 |
10105 | 0 | 味道著實一般送到時候飯涼涼的 | 14 |
统计信息:
data = data[data.review_length <= 50]
words = data.review.tolist()
chars = sorted(list(set(''.join(words)))) # all the possible characters
max_word_length = max(len(w) for w in words)
print(f"number of examples: {len(words)}")
print(f"max word length: {max_word_length}")
print(f"size of vocabulary: {len(chars)}")
number of examples: 10796
max word length: 50
size of vocabulary: 2272
test_set_size = min(1000, int(len(words) * 0.1)) # 10% of the training set, or up to 10 examples
rp = torch.randperm(len(words)).tolist()
train_words = [words[i] for i in rp[:-test_set_size]]
test_words = [words[i] for i in rp[-test_set_size:]]
print(f"split up the dataset into {len(train_words)} training examples and {len(test_words)} test examples")
split up the dataset into 9796 training examples and 1000 test examples
class CharDataset(Dataset): def __init__(self, words, chars, max_word_length): self.words = words self.chars = chars self.max_word_length = max_word_length # char-->index-->char self.char2i = {ch:i+1 for i,ch in enumerate(chars)} self.i2char = {i:s for s,i in self.char2i.items()} def __len__(self): return len(self.words) def contains(self, word): return word in self.words def get_vocab_size(self): return len(self.chars) + 1 # add a special token 0 def get_output_length(self): return self.max_word_length + 1 # <START> : special tolen def encode(self, word): # char sequece ---> index sequence ix = torch.tensor([self.char2i[w] for w in word], dtype=torch.long) return ix def decode(self, ix): # index sequence ---> char sequence word = ''.join(self.i2char[i] for i in ix) return word def __getitem__(self, idx): word = self.words[idx][:max_word_length] ix = self.encode(word) x = torch.zeros(self.max_word_length + 1, dtype=torch.long) y = torch.zeros(self.max_word_length + 1, dtype=torch.long) x[1:1+len(ix)] = ix y[:len(ix)] = ix # len(ix)+1 : <END> : 0 y[len(ix)+1:] = -1 # index -1 will mask the loss at the inactive locations return x, y
train_dataset = CharDataset(train_words, chars, max_word_length)
test_dataset = CharDataset(test_words, chars, max_word_length)
class InfiniteDataLoader:
def __init__(self, dataset, **kwargs):
train_sampler = torch.utils.data.RandomSampler(dataset, replacement=True, num_samples=int(1e10))
self.train_loader = DataLoader(dataset, sampler=train_sampler, **kwargs)
self.data_iter = iter(self.train_loader)
def next(self):
try:
batch = next(self.data_iter)
except StopIteration: # this will technically only happen after 1e10 samples... (i.e. basically never)
self.data_iter = iter(self.train_loader)
batch = next(self.data_iter)
return batch
@dataclass
class ModelConfig:
block_size: int = None # length of the input sequences
vocab_size: int = None # size of vocabulary
class Bigram(nn.Module): def __init__(self, config): super().__init__() n = config.vocab_size # 参数化,二元查找表 self.logits = nn.Parameter(torch.ones((n, n))/n) # 上下文的长度,1:只用前一个字符预测下一个 def get_block_size(self): return 1 def forward(self, idx, targets=None): # 'forward pass':lookup logits = self.logits[idx] # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) return logits, loss
@torch.inference_mode()
def evaluate(model, dataset, batch_size=10, max_batches=None):
model.eval()
loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=0)
losses = []
for i, batch in enumerate(loader):
batch = [t.to('cuda') for t in batch]
X, Y = batch
logits, loss = model(X, Y)
losses.append(loss.item())
if max_batches is not None and i >= max_batches:
break
mean_loss = torch.tensor(losses).mean().item()
model.train() # reset model back to training mode
return mean_loss
torch.manual_seed(seed=12345)
torch.cuda.manual_seed_all(seed=12345)
work_dir = "./bigram_log"
os.makedirs(work_dir, exist_ok=True)
writer = SummaryWriter(log_dir=work_dir)
config = ModelConfig(vocab_size=train_dataset.get_vocab_size(),
block_size=1)
model = Bigram(config)
model.to('cuda')
Bigram()
# init optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=5e-4, weight_decay=0.01, betas=(0.9, 0.99), eps=1e-8) # init dataloader batch_loader = InfiniteDataLoader(train_dataset, batch_size=64, pin_memory=True, num_workers=4) # training loop best_loss = None step = 0 train_losses, test_losses = [],[] while True: t0 = time.time() # get the next batch, ship to device, and unpack it to input and target batch = batch_loader.next() batch = [t.to('cuda') for t in batch] X, Y = batch # feed into the model logits, loss = model(X, Y) # calculate the gradient, update the weights model.zero_grad(set_to_none=True) loss.backward() optimizer.step() # wait for all CUDA work on the GPU to finish then calculate iteration time taken torch.cuda.synchronize() t1 = time.time() # logging if step % 1000 == 0: print(f"step {step} | loss {loss.item():.4f} | step time {(t1-t0)*1000:.2f}ms") # evaluate the model if step > 0 and step % 100 == 0: train_loss = evaluate(model, train_dataset, batch_size=100, max_batches=10) test_loss = evaluate(model, test_dataset, batch_size=100, max_batches=10) train_losses.append(train_loss) test_losses.append(test_loss) #writer.add_scalar("Loss/train", train_loss, step) #writer.add_scalar("Loss/test", test_loss, step) #writer.flush() #print(f"step {step} train loss: {train_loss} test loss: {test_loss}") # save the model to disk if it has improved if best_loss is None or test_loss < best_loss: out_path = os.path.join(work_dir, "model.pt") print(f"test loss {test_loss} is the best so far, saving model to {out_path}") torch.save(model.state_dict(), out_path) best_loss = test_loss step += 1 # termination conditions if step > 15100: break
step 0 | loss 7.7289 | step time 22.08ms
test loss 7.676259517669678 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.622135162353516 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.568359375 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.5148138999938965 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.461203098297119 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.407928466796875 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.354836463928223 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.3021063804626465 is the best so far, saving model to ./bigram_log/model.pt
test loss 7.249790191650391 is the best so far, saving model to ./bigram_log/model.pt
step 1000 | loss 7.1475 | step time 3.47ms
....
step 15000 | loss 3.6146 | step time 3.21ms
test loss 4.035704135894775 is the best so far, saving model to ./bigram_log/model.pt
test loss 4.032766819000244 is the best so far, saving model to ./bigram_log/model.pt
@torch.no_grad() def generate(model, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None): block_size = model.get_block_size() for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= block_size else idx[:, -block_size:] # forward the model to get the logits for the index in the sequence logits, _ = model(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, top_k) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # either sample from the distribution or take the most likely element if do_sample: idx_next = torch.multinomial(probs, num_samples=1) else: _, idx_next = torch.topk(probs, k=1, dim=-1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx
def print_samples(num=13, top_k = None):
# inital 0 tokens
X_init = torch.zeros(num, 1, dtype=torch.long).to('cuda')
steps = train_dataset.get_output_length() - 1 # -1 because we already start with <START> token (index 0)
X_samp = generate(model, X_init, steps, top_k=top_k, do_sample=True).to('cuda')
new_samples = []
for i in range(X_samp.size(0)):
# get the i'th row of sampled integers, as python list
row = X_samp[i, 1:].tolist() # note: we need to crop out the first <START> token
# token 0 is the <END> token, so we crop the output sequence at that point
crop_index = row.index(0) if 0 in row else len(row)
row = row[:crop_index]
word_samp = train_dataset.decode(row)
new_samples.append(word_samp)
return new_samples
print_samples(num=5)
['特意写挑烦热吗水煮丽蛹姨滥转胎描芝染渣熘健故者绒豪贴。',
'送,但是够有点的咽奉伤蜗密餐.。鸡肉块么特别家还跑当赖焦欢饥屏印两个小哥不错',
'我也不错',
'刚厨睡共竹系百度特别还是怎么好',
'不说,吃的那么味道还是速度快']
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。