赞
踩
【尚硅谷】2022版Kafka3.x教程(从入门到调优,深入全面)
100 万日活,每人每天 100 条日志,每天总共的日志条数是 100 万 * 100 条 = 1 亿条。
1 亿/24 小时/60 分/60 秒 = 1150 条/每秒钟。
每条日志大小:0.5k - 2k(取 1k)。
1150 条/每秒钟 * 1k ≈ 1m/s 。
高峰期每秒钟:1150 条 * 20 倍 = 23000 条。
每秒多少数据量:20MB/s。
服务器台数= 2 * (生产者峰值生产速率 * 副本 / 100) + 1
= 2 * (20m/s * 2 / 100) + 1
= 3 台
建议 3 台服务器。
kafka 底层主要是顺序写,固态硬盘和机械硬盘的顺序写速度差不多。
建议选择普通的机械硬盘。
每天总数据量:1 亿条 * 1k ≈ 100g
100g * 副本 2 * 保存时间 3 天 / 0.7 ≈ 1T
建议三台服务器硬盘总大小,大于等于 1T。
Kafka 内存组成:堆内存(kafka内部配置) + 页缓存(服务器内存)
1)Kafka 堆内存建议每个节点:10g ~ 15g
在 kafka-server-start.sh 中修改
if [ "x$KAFKA_HEAP_OPTS" = "x" ]; then
export KAFKA_HEAP_OPTS="-Xmx10G -Xms10G"
fi
(1)查看 Kafka 进程号
[atguigu@hadoop102 kafka]$ jps
2321 Kafka
5255 Jps
1931 QuorumPeerMain
(2)根据 Kafka 进程号,查看 Kafka 的 GC 情况
[atguigu@hadoop102 kafka]$ jstat -gc 2321 1s 10
S0C S1C S0U S1U EC EU OC OU MC MU CCSC CCSU YGC YGCT FGC FGCT GCT
0.0 7168.0 0.0 7168.0 103424.0 60416.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 60416.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 60416.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 60416.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 60416.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 61440.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 61440.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 61440.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 61440.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
0.0 7168.0 0.0 7168.0 103424.0 61440.0 1986560.0 148433.5 52092.0 46656.1 6780.0 6202.2 13 0.531 0 0.000 0.531
参数说明:
S0C:第一个幸存区的大小; S1C:第二个幸存区的大小
S0U:第一个幸存区的使用大小; S1U:第二个幸存区的使用大小
EC:伊甸园区的大小; EU:伊甸园区的使用大小
OC:老年代大小; OU:老年代使用大小
MC:方法区大小; MU:方法区使用大小
CCSC:压缩类空间大小; CCSU:压缩类空间使用大小
YGC:年轻代垃圾回收次数; YGCT:年轻代垃圾回收消耗时间
FGC:老年代垃圾回收次数; FGCT:老年代垃圾回收消耗时间
GCT:垃圾回收消耗总时间;
(3)根据 Kafka 进程号,查看 Kafka 的堆内存
[atguigu@hadoop102 kafka]$ jmap -heap 2321 Attaching to process ID 2321, please wait... Debugger attached successfully. Server compiler detected. JVM version is 25.212-b10 using thread-local object allocation. Garbage-First (G1) GC with 8 thread(s) Heap Configuration: MinHeapFreeRatio = 40 MaxHeapFreeRatio = 70 MaxHeapSize = 2147483648 (2048.0MB) NewSize = 1363144 (1.2999954223632812MB) MaxNewSize = 1287651328 (1228.0MB) OldSize = 5452592 (5.1999969482421875MB) NewRatio = 2 SurvivorRatio = 8 MetaspaceSize = 21807104 (20.796875MB) CompressedClassSpaceSize = 1073741824 (1024.0MB) MaxMetaspaceSize = 17592186044415 MB G1HeapRegionSize = 1048576 (1.0MB) Heap Usage: G1 Heap: regions = 2048 capacity = 2147483648 (2048.0MB) used = 246367744 (234.95458984375MB) free = 1901115904 (1813.04541015625MB) 11.472392082214355% used G1 Young Generation: Eden Space: regions = 83 capacity = 105906176 (101.0MB) used = 87031808 (83.0MB) free = 18874368 (18.0MB) 82.17821782178218% used Survivor Space: regions = 7 capacity = 7340032 (7.0MB) used = 7340032 (7.0MB) free = 0 (0.0MB) 100.0% used G1 Old Generation: regions = 147 capacity = 2034237440 (1940.0MB) used = 151995904 (144.95458984375MB) free = 1882241536 (1795.04541015625MB) 7.471886074420103% used 13364 interned Strings occupying 1449608 bytes.
2)页缓存:页缓存是 Linux 系统服务器的内存。我们只需要保证 1 个 segment(1g)中25%的数据在内存中就好。
每个节点页缓存大小 =(分区数 * 1g * 25%)/ 节点数。例如 10 个分区leader,页缓存大小=(10 * 1g * 25%)/ 3 ≈ 1g
建议服务器内存大于等于 11G。
num.io.threads = 8
负责写磁盘的线程数,整个参数值要占总核数的 50%。
num.replica.fetchers = 1
副本拉取线程数,这个参数占总核数的 50%的 1/3。
num.network.threads = 3
数据传输线程数,这个参数占总核数的 50%的 2/3。
建议 32 个 cpu core。
24(12,4,8)+ 8
网络带宽 = 峰值吞吐量 ≈ 20MB/s 选择千兆网卡即可。
100Mbps 单位是 bit;10M/s 单位是 byte ; 1byte = 8bit,100Mbps/8 = 12.5M/s。
一般百兆的网卡(100Mbps )、千兆的网卡(1000Mbps)、万兆的网卡(10000Mbps)。
3.1.1 Updating Broker Configs
From Kafka version 1.1 onwards, some of the broker configs can be
updated without restarting the broker. See the Dynamic Update Mode
column in Broker Configs for the update mode of each broker config.
read-only: Requires a broker restart for update
per-broker: May be updated dynamically for each broker
cluster-wide: May be updated dynamically as a cluster-wide default.
May also be updated as a per-broker value for testing.
参数名称 描述
bootstrap.servers
生 产 者 连 接 集 群 所 需 的 broker 地 址 清 单 。 例 如hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者从给定的 broker 里查找到其他 broker 信息。
key.serializer
和 value.serializer
指定发送消息的 key 和 value 的序列化类型。一定要写全类名。
buffer.memory
RecordAccumulator 缓冲区总大小,默认 32m。
batch.size
缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms
如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。
acks
0:生产者发送过来的数据,不需要等数据落盘应答。
1:生产者发送过来的数据,Leader 收到数据后应答。
-1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和 all是等价的。
max.in.flight.requests.per.connection
允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字。retries 当消息发送出现错误的时候,系统会重发消息。
retries
表示重试次数。默认是 int 最大值,2147483647。
如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms
两次重试之间的时间间隔,默认是 100ms。
enable.idempotence
是否开启幂等性,默认 true,开启幂等性。
compression.type
生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd。
参数名称 描述
buffer.memory RecordAccumulator
缓冲区总大小,默认 32m。
batch.size
缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms
如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。
compression.type
生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd。
详见,尚硅谷大数据技术之 Kafka3.0.0
参数名称 描述
acks
0:生产者发送过来的数据,不需要等
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。