当前位置:   article > 正文

树莓派Linux实现ChatGPT语音交互(语音识别,TTS)_在树莓派上搭建语音识别服务

在树莓派上搭建语音识别服务


前言

ChatGPT使用想必大家都不陌生,进入官网,注册账号即可开始正式的对话聊天,可是如何使用ChatGPT API,且在Linux环境下进行语音交互呢?碰巧在今年暑期参加物联网设计竞赛有用到这项功能,今天就来教下大家详细步骤。


一、ChatGPT API获取

如何获取一个ChatGPT账号相比对大家来说不是一件难事,网上教程很多大家可以搜一下,获取到一个账号后,可以进入https://platform.openai.com/account/api-keys页面。
在这里插入图片描述
选择创建一个api key 大家一定要保存好这个密钥,后续使用都是利用这个密钥。这里需要注意免费API每个账户都是有限的,五美元,理论上自己日常使用时用不完了的。

二、API使用步骤

接下来就让我们来试验一下API密钥。首先在Linux环境下需要安装openai的包这里我们以树莓派为例。

pip3 install openai
  • 1

成功安装后我们就可以创建一个Python运行一下,而众所周知,ChatGPT是需要需要使用魔法的,API调用也不例外。

# -*- coding: utf-8 -*-

import openai

# 设置OpenAI API密钥
openai.api_key = 'sk-xxxx'#这里需要替换为你的账户API KEY

# 定义初始对话历史
conversation_history = [
    {'role': 'system', 'content': 'You are a helpful assistant.'}
]

# 循环交互
while True:
    # 处理用户输入
    user_input = input("User: ")

    # 将用户输入添加到对话历史中
    conversation_history.append({'role': 'user', 'content': user_input})

    # 发送聊天请求
    response = openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=conversation_history,
        max_tokens=100,
        n=1,
        stop=None,
        temperature=0.7
    )

    # 获取助手的回复
    assistant_reply = response['choices'][0]['message']['content']

    # 打印助手的回复
    print("Assistant:", assistant_reply)

    # 将助手的回复添加到对话历史中
    conversation_history.append({'role': 'assistant', 'content': assistant_reply})

    # 检查用户是否选择退出循环
    if user_input.lower() == 'exit':
        break


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

通过以上代码实现简单的API调用,运行。
在这里插入图片描述
问出问题,就可以得到你想要的答案。其中的模型大家也可以根据需求选用。

三、语音识别

首先最重要的是外接一个麦克风设备,对外界实时音频进行识别,这里树莓派上使用的无驱的USB麦克风设备。
在这里插入图片描述
想要实现真正意义上的语音交互,就只能从实时音频流中读取。

这里我们使用的是Google的语音识别API SpeechRecognition。
首先在终端中安装相关包。

pip3 install SpeechRecognition
  • 1

成功安装,且麦克风设备安装完成,我们就可以进入下一步。
我们使用一个Python程序来进行实现。

import speech_recognition as sr

# 创建一个Recognizer对象
r = sr.Recognizer()

# 使用麦克风录音
with sr.Microphone() as source:
    print("请说话:")
    audio = r.listen(source)

# 将语音转换为文本
try:
    text = r.recognize_google(audio, language='zh-CN')
    print("你说的是:" + text)
except sr.UnknownValueError:
    print("无法识别你的语音")
except sr.RequestError as e:
    print("无法连接到Google API,错误原因:" + str(e))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

这里是实现实时音频的识别。需要注意的是,speech_recognition的使用也需要Linux环境下的魔法上网。
运行代码会出现许多报错信息,但这些都不影响我们的识别结果。
在这里插入图片描述
当显示请说话示例时就可以提出问题了。实测在安静环境下识别速度和识别准确率还是非常高的。
识别返回的结果保存在text中,只要将text赋值给上述GPT的输入即可。

三、TTS(语音合成)

要想实现语音对话,还需要将GPT回复的问题经过TTS转化为音频。
这里使用的阿里云的Sambert语音合成,实测合成速度很快,且语音自然。
首先需要下载Sambert的包

pip3 install dashscope
  • 1

试验一下

# coding=utf-8

import dashscope
from dashscope.audio.tts import SpeechSynthesizer

dashscope.api_key='your-dashscope-api-key'

result = SpeechSynthesizer.call(model='sambert-zhichu-v1',
                                text='今天天气怎么样',
                                sample_rate=48000,
                                format='wav')

if result.get_audio_data() is not None:
    with open('output.wav', 'wb') as f:
        f.write(result.get_audio_data())
print('  get response: %s' % (result.get_response()))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

执行代码后就能生成一个output.wav文件,文件内容就是text中问出的问题。

四、音频播放

得到了生成的音频文件,我们还需要将他播放出来。
Linux环境下python播放音频播放我尝过各种方式,最后使用效果最好,延时最低的是使用pygame来播放。
还是以同样的步骤,安装pygame。

pip3 install pygame
  • 1

五、功能整合

将所有功能进行整合,即可实现最后想要实现的功能。

# -*- coding: utf-8 -*-
import openai
import pygame
from pygame import mixer
import dashscope
from dashscope.audio.tts import SpeechSynthesizer
import speech_recognition as sr
import time
# 创建一个Recognizer对象
r = sr.Recognizer()
mixer.init()

# 设置OpenAI API密钥
openai.api_key = 'sk-xx'
dashscope.api_key='sk-xx'

# 定义初始对话历史
conversation_history = [
    {'role': 'system', 'content': 'You are a helpful assistant.'}
]

# 循环交互
while True:
    # 处理用户输入
    # 使用麦克风录音
    with sr.Microphone() as source:
        print("请开始说话...")
        audio = r.listen(source)

    try:
        # 使用语音识别引擎将音频转换为文字
        text = r.recognize_google(audio, language='zh-CN')
        print("识别结果:", text)
    except sr.UnknownValueError:
        print("无法识别音频")
    except sr.RequestError as e:
        print("请求出错:", e)
    user_input = text

    # 将用户输入添加到对话历史中
    conversation_history.append({'role': 'user', 'content': user_input})

    # 发送聊天请求
    response = openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=conversation_history,
        max_tokens=100,
        n=1,
        stop=None,
        temperature=0.7
    )

    # 获取助手的回复
    assistant_reply = response['choices'][0]['message']['content']
    result = SpeechSynthesizer.call(model='sambert-zhimiao-emo-v1',
                                text=assistant_reply,
                                sample_rate=48000,
                                format='wav')
    # 打印助手的回复
    print("Assistant:", assistant_reply)
    if result.get_audio_data() is not None:
        with open('output.wav', 'wb') as f:
            f.write(result.get_audio_data())
    mixer.music.load('output.wav')
    mixer.music.play()

    # 将助手的回复添加到对话历史中
    conversation_history.append({'role': 'assistant', 'content': assistant_reply})
    time.sleep(1)
    while pygame.mixer.music.get_busy()!=True:  # 在音频播放完成之前不退出程序
        pass
    print('  get response: %s' % (result.get_response()))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72

运行代码,就可以的到想要得到的效果。因代理问题,最后效果会有短暂的延时。

总结

该案例实现起来不难,找准如何使用才是关键所在,这里实现的用ChatGPT,也可换成文心一言等国内大模型,其效果更好,响应速度更快。本次的分享也就到这里,如果还有什么问题请各位批评指教,大家一起相互学习。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/455704
推荐阅读
相关标签
  

闽ICP备14008679号