赞
踩
Elasticsearch 父子关系维护和检索案例分享,展示has_child和has_parent的基本用法。
本案例针对elasticsearch 5.x进行父子关系进行介绍,6.x版本通过join type来实现父子关系检索,参考文档后面提供的demo。
本文涉及技术点:
1.删除和创建公司/雇员父子关系的索引表
2.bulk批量导入json格式数据
3.ormapping方式bulk批量导入数据
4.采用@ESId指定文档_id
5.采用@ESParentId制定子文档的parent信息
6.基本的has_child和has_parent公司/雇员父子关系检索
1.准备工作
2.定义dsl文档
建立dsl配置文件-esmapper/indexparentchild.xml
"settings": {
"number_of_shards": 6,
"index.refresh_interval": "5s"
},
"mappings": {
"company": { ##公司
"properties": {
"name": {
"type": "text",
"fields": { ##dsl注释 定义精确查找的内部keyword字段
"keyword": {
"type": "keyword"
}
}
},
"city": {
"type": "text",
"fields": { ##dsl注释 定义精确查找的内部keyword字段
"keyword": {
"type": "keyword"
}
}
},
"country": {
"type": "text",
"fields": { ##dsl注释 定义精确查找的内部keyword字段
"keyword": {
"type": "keyword"
}
}
},
"companyId": {
"type": "keyword"
}
}
},
"employee":
{ ##雇员
"_parent": {##定义雇员和公司父子关联关系
"type": "company"
},
"_routing": {
"required": false
},
"properties": {
"name": {
"type": "text",
"fields": { ##dsl注释 定义精确查找的内部keyword字段
"keyword": {
"type": "keyword"
}
}
},
"birthday": {
"type": "date",
"format":"yyyy-MM-dd||epoch_millis"
},
"hobby": {
"type": "text",
"fields": { ##dsl注释 定义精确查找的内部keyword字段
"keyword": {
"type": "keyword"
}
}
},
"companyId": {
"type": "keyword"
},
"employId": {
"type": "keyword"
}
}
}
}
}]]>
{ "index": { "_id": "london" }}
{ "name": "London Westminster", "city": "London", "country": "UK" ,"companyId":"london"}
{ "index": { "_id": "liverpool" }}
{ "name": "Liverpool Central", "city": "Liverpool", "country": "UK" ,"companyId":"liverpool"}
{ "index": { "_id": "paris" }}
{ "name": "Champs Élysées", "city": "Paris", "country": "France","companyId":"paris" }
]]>
{ "index": { "_id": 1, "parent": "london" }}
{ "name": "Alice Smith", "birthday": "1970-10-24", "hobby": "hiking" ,"companyId":"london","employeeId":1 }
{ "index": { "_id": 2, "parent": "london" }}
{ "name": "Mark Thomas", "birthday": "1982-05-16", "hobby": "diving" ,"companyId":"london","employeeId":2}
{ "index": { "_id": 3, "parent": "liverpool" }}
{ "name": "Barry Smith", "birthday": "1979-04-01", "hobby": "hiking" ,"companyId":"liverpool","employeeId":3}
{ "index": { "_id": 4, "parent": "paris" }}
{ "name": "Adrien Grand", "birthday": "1987-05-11", "hobby": "horses" ,"companyId":"paris","employeeId":4}
{ "index": { "_id": 5, "parent": "paris" }}
{ "name": "Adrien Green", "birthday": "1977-05-12", "hobby": "dancing" ,"companyId":"paris","employeeId":5}
]]>
{
"query": {
"has_child": {
"type": "employee",
"query": {
"range": {
"birthday": {
"gte": #[birthday]
}
}
}
}
}
}
]]>
{
"query": {
"has_child": {
"type": "employee",
"score_mode": "max",
"query": {
"match": {
"name": #[name]
}
}
}
}
}
]]>
{
"query": {
"has_child": {
"type": "employee",
"min_children": #[min_children],
"query": {
"match_all": {}
}
}
}
}
]]>
{
"query": {
"has_parent": {
"type": "company",
"query": {
"match": {
"country": #[country]
}
}
}
}
}
]]>
3.实现has_child和has_parent检索
首先创建带公司和雇员关系的索引结构
public void createIndice(){
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/indexparentchild.xml");
try {
//删除mapping
clientUtil.dropIndice("company");
} catch (ElasticSearchException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
//创建mapping
clientUtil.createIndiceMapping("company","createCompanyEmployeeIndice");
}
然后通过bulk导入测试需要的公司和雇员数据,本案例通过加载配置文件中的dsl json data导入公司和雇员数据:
public void importData(){
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/indexparentchild.xml");
//导入公司数据,并且实时刷新,测试需要,实际环境不要带refresh
clientUtil.executeHttp("company/company/_bulk?refresh","bulkImportCompanyData",ClientUtil.HTTP_POST);
//导入雇员数据,并且实时刷新,测试需要,实际环境不要带refresh
clientUtil.executeHttp("company/employee/_bulk?refresh","bulkImportEmployeeData",ClientUtil.HTTP_POST);
}
如果需要根据List集合批量导入测试数据,则参考以下方法:
/**
* 通过List集合导入雇员和公司数据
*/
public void importDataFromBeans() {
ClientInterface clientUtil = ElasticSearchHelper.getRestClientUtil();
//导入公司数据,并且实时刷新,测试需要,实际环境不要带refresh
List companies = buildCompanies();
clientUtil.addDocuments("company","company",companies,"refresh");
//导入雇员数据,并且实时刷新,测试需要,实际环境不要带refresh
List employees = buildEmployees();
clientUtil.addDocuments("company","employee",employees,"refresh");
}
List和List列表分别对应需要批量导入的公司数据和雇员数据。需要特别说明的是Company和Employee这两个对象采用了注解@ESId来标注文档_id属性,采用@ESParentId属性来标注雇员和公司的关联属性:
public class Company extends ESBaseData {
private String name;
/**
* 将companyId作为索引_id的值
*/
@ESId
private String companyId;
。。。。。。
public class Employee extends ESBaseData {
/**
* 通过ESId注解将employeeId指定为雇员的文档_id
*/
@ESId
private int employeeId;
/**
* 通过ESParentId注解将companyId指定为雇员的parent属性,对应Company中的文档_id的值
*/
@ESParentId
private String companyId;
接下来实现has_child和has_parent检索功能
/**
* 通过雇员生日检索公司信息
*/
public void hasChildSearchByBirthday(){
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/indexparentchild.xml");
Map params = new HashMap();
params.put("birthday","1980-01-01");
ESDatas escompanys = clientUtil.searchList("company/company/_search","hasChildSearchByBirthday",params,Company.class);
List companyList = escompanys.getDatas();//获取符合条件的公司
long totalSize = escompanys.getTotalSize();
}
/**
* 通过雇员姓名检索公司信息
*/
public void hasChildSearchByName(){
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/indexparentchild.xml");
Map params = new HashMap();
params.put("name","Alice Smith");
ESDatas escompanys = clientUtil.searchList("company/company/_search","hasChildSearchByName",params,Company.class);
List companyList = escompanys.getDatas();//获取符合条件的公司
long totalSize = escompanys.getTotalSize();
}
/**
* 通过雇员数量检索公司信息
*/
public void hasChildSearchByMinChild(){
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/indexparentchild.xml");
Map params = new HashMap();
params.put("min_children",2);
ESDatas escompanys = clientUtil.searchList("company/company/_search","hasChildSearchByMinChild",params,Company.class);
List companyList = escompanys.getDatas();//获取符合条件的公司
long totalSize = escompanys.getTotalSize();
}
/**
* 通过公司所在国家检索雇员信息
*/
public void hasParentSearchByCountry(){
ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/indexparentchild.xml");
Map params = new HashMap();
params.put("country","UK");
ESDatas escompanys = clientUtil.searchList("company/employee/_search","hasParentSearchByCountry",params,Employee.class);
List companyList = escompanys.getDatas();//获取符合条件的公司
long totalSize = escompanys.getTotalSize();
}
通过junit测试用例执行上述功能
@Test
public void test(){
createIndice();
importData();
hasChildSearchByBirthday();
this.hasChildSearchByName();
this.hasChildSearchByMinChild();
this.hasParentSearchByCountry();
}
4.参考文档
测试用例对应的工程
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。