赞
踩
前言:
LQR算法在自动驾驶应用中,一般用在NOP、TJA、LCC这些算法的横向控制中,一般与曲率的前馈控制一起使用,来实现轨迹跟踪的目标,通过控制方向盘转角来实现横向控制。
本文将使用python来实现 lqr_speed_steering_control( ) 轨迹跟踪算法的demo,通过同时控制转角与加速度来实现轨迹跟踪。
如果对自动驾驶规划、控制、apollo算法细节、感知融合算法感兴趣,可以关注我的主页:
最新免费文章推荐:
prescan联合simulink进行FCW的仿真_自动驾驶 Player的博客-CSDN博客
Apollo Planning决策规划代码详细解析 (1):Scenario选择
自动驾驶算法详解 (1) : Apollo路径规划 Piecewise Jerk Path Optimizer的python实现
自动驾驶算法详解(5): 贝塞尔曲线进行路径规划的python实现
使用Vscode断点调试apollo的方法_自动驾驶 Player的博客-CSDN博客
Apollo规划决策算法仿真调试(1): 使用Vscode断点调试apollo的方法
Apollo规划决策算法仿真调试(4):动态障碍物绕行_自动驾驶 Player的博客-CSDN博客
正文如下:
一、LQR问题模型建立:
理论部分比较成熟,这里只介绍demo所使用的建模方程:
使用离散代数黎卡提方程求解
LQR控制的步骤:
选择参数矩阵Q,R
求解Riccati方程得到矩阵P
根据P计算 K = R − 1 B T P K=R^{-1}B^{T}P K=R−1BTP
计算控制量 u = − K x u=-Kx u=−Kx
系统状态矩阵:
输入矩阵:
A矩阵:
B矩阵:
二、代码实现
- # 导入相关包
-
- import math
-
- import sys
-
- import os
-
- import matplotlib.pyplot as plt
-
- import numpy as np
-
- import scipy.linalg as la
-
-
- # cubic_spline_planner为自己实现的三次样条插值方法
-
- try:
-
- from cubic_spline_planner import *
-
- except ImportError:
-
- raise
设置轨迹途经点并生成轨迹:
- # 设置轨迹会经过的点
-
- ax = [0.0, 6.0, 12.5, 10.0, 17.5, 20.0, 25.0]
-
- ay = [0.0, -3.0, -5.0, 6.5, 3.0, 0.0, 0.0]
-
- goal = [ax[-1], ay[-1]]
-
-
-
- # 使用三次样条插值方法,根据途经点生成轨迹,x、y、yaw、曲率k,距离s
-
- cx, cy, cyaw, ck, s = calc_spline_course(
-
- ax, ay, ds=0.1)
-
-
-
- # 绘制规划好的轨迹
-
- plt.plot(ax, ay, "xb", label="waypoints")
-
- plt.plot(cx, cy, "-r", label="target course")
生成的轨迹如下:
设置期望速度:
- # 设置目标速度
-
- target_speed = 10.0 / 3.6 # simulation parameter km/h -> m/s
-
-
-
-
-
- speed_profile = [target_speed] * len(cyaw)
-
-
-
- direction = 1.0
-
-
-
- # 转弯幅度较大时将速度设置为0,并将速度方向翻转
-
- # Set stop point
-
- for i in range(len(cyaw) - 1):
-
- dyaw = abs(cyaw[i + 1] - cyaw[i])
-
- switch = math.pi / 4.0 <= dyaw < math.pi / 2.0
-
-
-
- if switch:
-
- direction *= -1
-
-
-
- if direction != 1.0:
-
- speed_profile[i] = - target_speed
-
- else:
-
- speed_profile[i] = target_speed
-
-
-
- if switch:
-
- speed_profile[i] = 0.0
-
-
-
- # 靠近目的地时,速度降低
-
- # speed down
-
- for i in range(40):
-
- speed_profile[-i] = target_speed / (50 - i)
-
- if speed_profile[-i] <= 1.0 / 3.6:
-
- speed_profile[-i] = 1.0 / 3.6
-
-
-
- plt.plot(speed_profile, "-b", label="speed_profile")
期望速度如下:
定义求解所需要的数据结构与方法:
- # 定义LQR 计算所需要的数据结构,以及DLQR的求解方法
-
-
-
- # State 对象表示自车的状态,位置x、y,以及横摆角yaw、速度v
-
- class State:
-
-
-
- def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
-
- self.x = x
-
- self.y = y
-
- self.yaw = yaw
-
- self.v = v
-
-
-
- # 更新自车的状态,采样时间足够小,则认为这段时间内速度相同,加速度相同,使用匀速模型更新位置
-
- def update(state, a, delta):
-
-
-
- if delta >= max_steer:
-
- delta = max_steer
-
- if delta <= - max_steer:
-
- delta = - max_steer
-
-
-
- state.x = state.x + state.v * math.cos(state.yaw) * dt
-
- state.y = state.y + state.v * math.sin(state.yaw) * dt
-
- state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
-
- state.v = state.v + a * dt
-
-
-
- return state
-
-
-
-
-
- def pi_2_pi(angle):
-
- return (angle + math.pi) % (2 * math.pi) - math.pi
-
-
-
-
-
- # 实现离散Riccati equation 的求解方法
-
- def solve_dare(A, B, Q, R):
-
- """
- solve a discrete time_Algebraic Riccati equation (DARE)
- """
-
- x = Q
-
- x_next = Q
-
- max_iter = 150
-
- eps = 0.01
-
-
-
- for i in range(max_iter):
-
- x_next = A.T @ x @ A - A.T @ x @ B @ \
-
- la.inv(R + B.T @ x @ B) @ B.T @ x @ A + Q
-
- if (abs(x_next - x)).max() < eps:
-
- break
-
- x = x_next
-
-
-
- return x_next
-
-
-
- # 返回值K 即为LQR 问题求解方法中系数K的解
-
- def dlqr(A, B, Q, R):
-
- """Solve the discrete time lqr controller.
- x[k+1] = A x[k] + B u[k]
- cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
- # ref Bertsekas, p.151
- """
-
-
-
- # first, try to solve the ricatti equation
-
- X = solve_dare(A, B, Q, R)
-
-
-
- # compute the LQR gain
-
- K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A)
-
-
-
- eig_result = la.eig(A - B @ K)
-
-
-
- return K, X, eig_result[0]
-
-
-
- # 计算距离自车当前位置最近的参考点
-
- def calc_nearest_index(state, cx, cy, cyaw):
-
- dx = [state.x - icx for icx in cx]
-
- dy = [state.y - icy for icy in cy]
-
-
-
- d = [idx ** 2 + idy ** 2 for (idx, idy) in zip(dx, dy)]
-
-
-
- mind = min(d)
-
-
-
- ind = d.index(mind)
-
-
-
- mind = math.sqrt(mind)
-
-
-
- dxl = cx[ind] - state.x
-
- dyl = cy[ind] - state.y
-
-
-
- angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
-
- if angle < 0:
-
- mind *= -1
-
-
-
- return ind, mind
设置起点参数:
- # 设置起点的参数
-
- T = 500.0 # max simulation time
-
- goal_dis = 0.3
-
- stop_speed = 0.05
-
-
-
- state = State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
-
-
-
- time = 0.0
-
- x = [state.x]
-
- y = [state.y]
-
- yaw = [state.yaw]
-
- v = [state.v]
-
- t = [0.0]
-
-
-
- pe, pth_e = 0.0, 0.0
使用LQR算法计算轨迹跟踪需要的加速度与前轮转角:
- # 配置LQR 的参数
-
- # === Parameters =====
-
-
-
- # LQR parameter
-
- lqr_Q = np.eye(5)
-
- lqr_R = np.eye(2)
-
- dt = 0.1 # time tick[s],采样时间
-
- L = 0.5 # Wheel base of the vehicle [m],车辆轴距
-
- max_steer = np.deg2rad(45.0) # maximum steering angle[rad]
-
-
-
- show_animation = True
-
-
-
- while T >= time:
-
- ind, e = calc_nearest_index(state, cx, cy, cyaw)
-
-
-
- sp = speed_profile
-
- tv = sp[ind]
-
-
-
- k = ck[ind]
-
- v_state = state.v
-
- th_e = pi_2_pi(state.yaw - cyaw[ind])
-
-
-
- # 构建LQR表达式,X(k+1) = A * X(k) + B * u(k), 使用Riccati equation 求解LQR问题
-
- # dt表示采样周期,v表示当前自车的速度
-
- # A = [1.0, dt, 0.0, 0.0, 0.0
-
- # 0.0, 0.0, v, 0.0, 0.0]
-
- # 0.0, 0.0, 1.0, dt, 0.0]
-
- # 0.0, 0.0, 0.0, 0.0, 0.0]
-
- # 0.0, 0.0, 0.0, 0.0, 1.0]
-
- A = np.zeros((5, 5))
-
- A[0, 0] = 1.0
-
- A[0, 1] = dt
-
- A[1, 2] = v_state
-
- A[2, 2] = 1.0
-
- A[2, 3] = dt
-
- A[4, 4] = 1.0
-
-
-
- # 构建B矩阵,L是自车的轴距
-
- # B = [0.0, 0.0
-
- # 0.0, 0.0
-
- # 0.0, 0.0
-
- # v/L, 0.0
-
- # 0.0, dt]
-
- B = np.zeros((5, 2))
-
- B[3, 0] = v_state / L
-
- B[4, 1] = dt
-
-
-
- K, _, _ = dlqr(A, B, lqr_Q, lqr_R)
-
-
-
- # state vector,构建状态矩阵
-
- # x = [e, dot_e, th_e, dot_th_e, delta_v]
-
- # e: lateral distance to the path, e是自车到轨迹的距离
-
- # dot_e: derivative of e, dot_e是自车到轨迹的距离的变化率
-
- # th_e: angle difference to the path, th_e是自车与期望轨迹的角度偏差
-
- # dot_th_e: derivative of th_e, dot_th_e是自车与期望轨迹的角度偏差的变化率
-
- # delta_v: difference between current speed and target speed,delta_v是当前车速与期望车速的偏差
-
- X = np.zeros((5, 1))
-
- X[0, 0] = e
-
- X[1, 0] = (e - pe) / dt
-
- X[2, 0] = th_e
-
- X[3, 0] = (th_e - pth_e) / dt
-
- X[4, 0] = v_state - tv
-
-
-
- # input vector,构建输入矩阵u
-
- # u = [delta, accel]
-
- # delta: steering angle,前轮转角
-
- # accel: acceleration,自车加速度
-
- ustar = -K @ X
-
-
-
- # calc steering input
-
- ff = math.atan2(L * k, 1) # feedforward steering angle
-
- fb = pi_2_pi(ustar[0, 0]) # feedback steering angle
-
- delta = ff + fb
-
-
-
- # calc accel input
-
- accel = ustar[1, 0]
-
-
-
- dl, target_ind, pe, pth_e, ai = delta, ind, e, th_e, accel
-
-
-
- state = update(state, ai, dl)
-
-
-
- if abs(state.v) <= stop_speed:
-
- target_ind += 1
-
-
-
- time = time + dt
-
-
-
- # check goal
-
- dx = state.x - goal[0]
-
- dy = state.y - goal[1]
-
- if math.hypot(dx, dy) <= goal_dis:
-
- print("Goal")
-
- break
-
-
-
- x.append(state.x)
-
- y.append(state.y)
-
- yaw.append(state.yaw)
-
- v.append(state.v)
-
- t.append(time)
-
-
-
- if target_ind % 100 == 0 and show_animation:
-
- plt.cla()
-
- # for stopping simulation with the esc key.
-
- plt.gcf().canvas.mpl_connect('key_release_event',
-
- lambda event: [exit(0) if event.key == 'escape' else None])
-
- plt.plot(cx, cy, "-r", label="course")
-
- plt.plot(x, y, "ob", label="trajectory")
-
- plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
-
- plt.axis("equal")
-
- plt.grid(True)
-
- plt.title("speed[km/h]:" + str(round(state.v * 3.6, 2))
-
- + ",target index:" + str(target_ind) + ", time si: " + str(time))
-
- plt.pause(0.1)
结果可视化:
- if show_animation: # pragma: no cover
-
- plt.close()
-
- plt.subplots(1)
-
- plt.plot(ax, ay, "xb", label="waypoints")
-
- plt.plot(cx, cy, "-r", label="target course")
-
- plt.plot(x, y, "-g", label="tracking")
-
- plt.grid(True)
-
- plt.axis("equal")
-
- plt.xlabel("x[m]")
-
- plt.ylabel("y[m]")
-
- plt.legend()
-
-
-
- plt.subplots(1)
-
- plt.plot(s, [np.rad2deg(iyaw) for iyaw in cyaw], "-r", label="yaw")
-
- plt.grid(True)
-
- plt.legend()
-
- plt.xlabel("line length[m]")
-
- plt.ylabel("yaw angle[deg]")
-
-
-
- plt.subplots(1)
-
- plt.plot(s, ck, "-r", label="curvature")
-
- plt.grid(True)
-
- plt.legend()
-
- plt.xlabel("line length[m]")
-
- plt.ylabel("curvature [1/m]")
-
-
-
- plt.show()
轨迹跟踪结果:
三、结果分析
LQR算法一般用在NOP、TJA、LCC这些功能的横向控制,几种典型工况的轨迹跟踪效果如下:
1、正常变道工况
2、转弯工况
3、轴距对控制效果的影响
L = 0.5
L = 2.5
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。