赞
踩
从索引tweet里面搜索字段user为kimchy的记录
GET /twitter/_search?q=user:kimchy
从索引tweet,user里面搜索字段user为kimchy的记录
- GET /twitter/tweet,user/_search?q=user:kimchy
- GET /kimchy,elasticsearch/_search?q=tag:wow
从所有索引里面搜索字段tag为wow的记录
- GET /_all/_search?q=tag:wow
- GET /_search?q=tag:wow
说明:搜索的端点地址可以是多索引多mapping type的。搜索的参数可作为URI请求参数给出,也可用 request body 给出
URI 搜索方式通过URI参数来指定查询相关参数。让我们可以快速做一个查询。
GET /twitter/_search?q=user:kimchy
可用的参数请参考: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html
如果我们只想知道有多少文档匹配某个查询,可以这样用参数:
GET /bank/_search?q=city:b*&size=0
如果我们只想知道有没有文档匹配某个查询,可以这样用参数:
GET /bank/_search?q=city:b*&size=0&terminate_after=1
比较两个查询的结果可以知道第一个查询返回所有的命中文档数,第二个查询由于只需要知道有没有文档,所以只要有文档就立即返回
Request body 搜索方式以JSON格式在请求体中定义查询 query。请求方式可以是 GET 、POST 。
- GET /twitter/_search
- {
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
可用的参数:
timeout:请求超时时长,限定在指定时长内响应(即使没查完);
from: 分页的起始行,默认0;
size:分页大小;
request_cache:是否缓存请求结果,默认true。
terminate_after:限定每个分片取几个文档。如果设置,则响应将有一个布尔型字段terminated_early来指示查询执行是否实际已经terminate_early。缺省为no terminate_after;
search_type:查询的执行方式,可选值dfs_query_then_fetch or query_then_fetch ,默认: query_then_fetch ;
batched_reduce_size:一次在协调节点上应该减少的分片结果的数量。如果请求中的潜在分片数量可能很大,则应将此值用作保护机制以减少每个搜索请求的内存开销。
6.1 query 元素定义查询
query 元素用Query DSL 来定义查询。
- GET /_search
- {
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
6.2 指定返回哪些内容
6.2.1 source filter 对_source字段进行选择
-
- GET /_search
- {
- "_source": false,
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
通配符查询
-
- GET /_search
- {
- "_source": [ "obj1.*", "obj2.*" ],
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
-
- GET /_search
- {
- "_source": "obj.*",
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
包含什么不包含什么
-
- GET /_search
- {
- "_source": {
- "includes": [ "obj1.*", "obj2.*" ],
- "excludes": [ "*.description" ]
- },
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
6.2.2 stored_fields 来指定返回哪些stored字段
-
- GET /_search
- {
- "stored_fields" : ["user", "postDate"],
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
说明:* 可用来指定返回所有存储字段
6.2.3 docValue Field 返回存储了docValue的字段值
-
- GET /_search
- {
- "query" : {
- "match_all": {}
- },
- "docvalue_fields" : ["test1", "test2"]
- }
6.2.4 version 来指定返回文档的版本字段
-
- GET /_search
- {
- "version": true,
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
6.2.5 explain 返回文档的评分解释
-
- GET /_search
- {
- "explain": true,
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
6.2.6 Script Field 用脚本来对命中的每个文档的字段进行运算后返回
-
- GET /bank/_search
- {
- "query": {
- "match_all": {}
- },
- "script_fields": {
- "test1": {
- "script": {
- "lang": "painless",
- "source": "doc['balance'].value * 2"
- }
- },
- "test2": {
- "script": {
- "lang": "painless",
- <!-- doc指文档-->
- "source": "doc['age'].value * params.factor",
- "params": {
- "factor": 2
- }
- }
- } }}
搜索结果:
- {
- "took": 3,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1000,
- "max_score": 1,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "25",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "44",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "99",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "119",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "126",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "145",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "183",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "190",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "208",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "222",
- "_score": 1,
- "fields": {
- "test1": [
- ],
- "test2": [
- ]
- }
- }
- ]
- }
- }
-
- GET /bank/_search
- {
- "query": {
- "match_all": {}
- },
- "script_fields": {
- "ffx": {
- "script": {
- "lang": "painless",
- "source": "doc['age'].value * doc['balance'].value"
- }
- },
- "balance*2": {
- "script": {
- "lang": "painless",
- "source": "params['_source'].balance*2"
- }
- }
- }
- }
说明:
params _source 取 _source字段值
官方推荐使用doc,理由是用doc效率比取_source 高
搜索结果:
- {
- "took": 26,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1000,
- "max_score": 1,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "25",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "44",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "99",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "119",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "126",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "145",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "183",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "190",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "208",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "222",
- "_score": 1,
- "fields": {
- "balance*2": [
- ],
- "ffx": [
- ]
- }
- }
- ]
- }
- }
6.2.7 min_score 限制最低评分得分
-
- GET /_search
- {
- "min_score": 0.5,
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
6.2.8 post_filter 后置过滤:在查询命中文档、完成聚合后,再对命中的文档进行过滤。
如:要在一次查询中查询品牌为gucci且颜色为红色的shirts,同时还要得到gucci品牌各颜色的shirts的分面统计。
创建索引并指定mappping:
-
- PUT /shirts
- {
- "mappings": {
- "_doc": {
- "properties": {
- "brand": { "type": "keyword"},
- "color": { "type": "keyword"},
- "model": { "type": "keyword"}
- }
- }
- }
- }
往索引里面放入文档即类似数据库里面的向表插入一行数据,并立即刷新
-
- PUT /shirts/_doc/1?refresh
- {
- "brand": "gucci",
- "color": "red",
- "model": "slim"
- }
- PUT /shirts/_doc/2?refresh
- {
- "brand": "gucci",
- "color": "green",
- "model": "seec"
- }
执行查询:
-
- GET /shirts/_search
- {
- "query": {
- "bool": {
- "filter": {
- "term": { "brand": "gucci" }
- }
- }
- },
- "aggs": {
- "colors": {
- "terms": { "field": "color" }
- }
- },
- "post_filter": {
- "term": { "color": "red" }
- }
- }
查询结果
-
- {
- "took": 109,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0,
- "hits": [
- {
- "_index": "shirts",
- "_type": "_doc",
- "_id": "1",
- "_score": 0,
- "_source": {
- "brand": "gucci",
- "color": "red",
- "model": "slim"
- }
- }
- ]
- },
- "aggregations": {
- "colors": {
- "doc_count_error_upper_bound": 0,
- "sum_other_doc_count": 0,
- "buckets": [
- {
- "key": "green",
- "doc_count": 1
- },
- {
- "key": "red",
- "doc_count": 1
- }
- ]
- }
- }
- }
6.2.9 sort 排序
可以指定按一个或多个字段排序。也可通过_score指定按评分值排序,_doc 按索引顺序排序。默认是按相关性评分从高到低排序。
-
- GET /bank/_search
- {
- "query": {
- "match_all": {}
- },
- "sort": [
- {
- "age": {
- "order": "desc"
- } },
- {
- "balance": {
- "order": "asc"
- } },
- "_score"
- ]
- }
说明:
order 值:asc、desc。如果不给定,默认是asc,_score默认是desc
查询结果:
- {
- "took": 181,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1000,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "549",
- "_score": 1,
- "_source": {
- "account_number": 549,
- "balance": 1932,
- "firstname": "Jacqueline",
- "lastname": "Maxwell",
- "age": 40,
- "gender": "M",
- "address": "444 Schenck Place",
- "employer": "Fuelworks",
- "email": "jacquelinemaxwell@fuelworks.com",
- "city": "Oretta",
- "state": "OR"
- },
- "sort": [
- 40,
- 1932,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "306",
- "_score": 1,
- "_source": {
- "account_number": 306,
- "balance": 2171,
- "firstname": "Hensley",
- "lastname": "Hardin",
- "age": 40,
- "gender": "M",
- "address": "196 Maujer Street",
- "employer": "Neocent",
- "email": "hensleyhardin@neocent.com",
- "city": "Reinerton",
- "state": "HI"
- },
- "sort": [
- 40,
- 2171,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "960",
- "_score": 1,
- "_source": {
- "account_number": 960,
- "balance": 2905,
- "firstname": "Curry",
- "lastname": "Vargas",
- "age": 40,
- "gender": "M",
- "address": "242 Blake Avenue",
- "employer": "Pearlesex",
- "email": "curryvargas@pearlesex.com",
- "city": "Henrietta",
- "state": "NH"
- },
- "sort": [
- 40,
- 2905,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "584",
- "_score": 1,
- "_source": {
- "account_number": 584,
- "balance": 5346,
- "firstname": "Pearson",
- "lastname": "Bryant",
- "age": 40,
- "gender": "F",
- "address": "971 Heyward Street",
- "employer": "Anacho",
- "email": "pearsonbryant@anacho.com",
- "city": "Bluffview",
- "state": "MN"
- },
- "sort": [
- 40,
- 5346,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "567",
- "_score": 1,
- "_source": {
- "account_number": 567,
- "balance": 6507,
- "firstname": "Diana",
- "lastname": "Dominguez",
- "age": 40,
- "gender": "M",
- "address": "419 Albany Avenue",
- "employer": "Ohmnet",
- "email": "dianadominguez@ohmnet.com",
- "city": "Wildwood",
- "state": "TX"
- },
- "sort": [
- 40,
- 6507,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "938",
- "_score": 1,
- "_source": {
- "account_number": 938,
- "balance": 9597,
- "firstname": "Sharron",
- "lastname": "Santos",
- "age": 40,
- "gender": "F",
- "address": "215 Matthews Place",
- "employer": "Zenco",
- "email": "sharronsantos@zenco.com",
- "city": "Wattsville",
- "state": "VT"
- },
- "sort": [
- 40,
- 9597,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "810",
- "_score": 1,
- "_source": {
- "account_number": 810,
- "balance": 10563,
- "firstname": "Alyssa",
- "lastname": "Ortega",
- "age": 40,
- "gender": "M",
- "address": "977 Clymer Street",
- "employer": "Eventage",
- "email": "alyssaortega@eventage.com",
- "city": "Convent",
- "state": "SC"
- },
- "sort": [
- 40,
- 10563,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "302",
- "_score": 1,
- "_source": {
- "account_number": 302,
- "balance": 11298,
- "firstname": "Isabella",
- "lastname": "Hewitt",
- "age": 40,
- "gender": "M",
- "address": "455 Bedford Avenue",
- "employer": "Cincyr",
- "email": "isabellahewitt@cincyr.com",
- "city": "Blanford",
- "state": "IN"
- },
- "sort": [
- 40,
- 11298,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "792",
- "_score": 1,
- "_source": {
- "account_number": 792,
- "balance": 13109,
- "firstname": "Becky",
- "lastname": "Jimenez",
- "age": 40,
- "gender": "F",
- "address": "539 Front Street",
- "employer": "Isologia",
- "email": "beckyjimenez@isologia.com",
- "city": "Summertown",
- "state": "MI"
- },
- "sort": [
- 40,
- 13109,
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "495",
- "_score": 1,
- "_source": {
- "account_number": 495,
- "balance": 13478,
- "firstname": "Abigail",
- "lastname": "Nichols",
- "age": 40,
- "gender": "F",
- "address": "887 President Street",
- "employer": "Enquility",
- "email": "abigailnichols@enquility.com",
- "city": "Bagtown",
- "state": "NM"
- },
- "sort": [
- 40,
- 13478,
- ]
- }
- ]
- }
- }
结果中每个文档会有排序字段值给出
-
- "hits": {
- "total": 1000,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "549",
- "_score": 1,
- "_source": {
- "account_number": 549,
- "balance": 1932, "age": 40, "state": "OR"
- },
- "sort": [
- 40,
- 1932,
- 1
- ]
- }
多值字段排序
对于值是数组或多值的字段,也可进行排序,通过mode参数指定按多值的:
-
- PUT /my_index/_doc/1?refresh
- {
- "product": "chocolate",
- "price": [20, 4]
- }
-
- POST /_search
- {
- "query" : {
- "term" : { "product" : "chocolate" }
- },
- "sort" : [
- {"price" : {"order" : "asc", "mode" : "avg"}}
- ]
- }
Missing values 缺失该字段的文档
missing 的值可以是 _last, _first
-
- GET /_search
- {
- "sort" : [
- { "price" : {"missing" : "_last"} }
- ],
- "query" : {
- "term" : { "product" : "chocolate" }
- }
- }
地理空间距离排序
官方文档:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-sort.html#geo-sorting
-
- GET /_search
- {
- "sort" : [
- {
- "_geo_distance" : {
- "pin.location" : [-70, 40],
- "order" : "asc",
- "unit" : "km",
- "mode" : "min",
- "distance_type" : "arc"
- }
- }
- ],
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
参数说明:
_geo_distance 距离排序关键字
pin.location是 geo_point 类型的字段
distance_type:距离计算方式 arc球面 、plane 平面。
unit: 距离单位 km 、m 默认m
Script Based Sorting 基于脚本计算的排序
-
- GET /_search
- {
- "query" : {
- "term" : { "user" : "kimchy" }
- },
- "sort" : {
- "_script" : {
- "type" : "number",
- "script" : {
- "lang": "painless",
- "source": "doc['field_name'].value * params.factor",
- "params" : {
- "factor" : 1.1
- }
- },
- "order" : "asc"
- }
- }
- }
-
-
6.3.0 折叠用 collapse指定根据某个字段对命中结果进行折叠
-
- GET /bank/_search
- {
- "query": {
- "match_all": {}
- },
- "collapse" : {
- "field" : "age"
- },
- "sort": ["balance"]
- }
查询结果:
- {
- "took": 56,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1000,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "820",
- "_score": null,
- "_source": {
- "account_number": 820,
- "balance": 1011,
- "firstname": "Shepard",
- "lastname": "Ramsey",
- "age": 24,
- "gender": "F",
- "address": "806 Village Court",
- "employer": "Mantro",
- "email": "shepardramsey@mantro.com",
- "city": "Tibbie",
- "state": "NV"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "894",
- "_score": null,
- "_source": {
- "account_number": 894,
- "balance": 1031,
- "firstname": "Tyler",
- "lastname": "Fitzgerald",
- "age": 32,
- "gender": "M",
- "address": "787 Meserole Street",
- "employer": "Jetsilk",
- "email": "tylerfitzgerald@jetsilk.com",
- "city": "Woodlands",
- "state": "WV"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "953",
- "_score": null,
- "_source": {
- "account_number": 953,
- "balance": 1110,
- "firstname": "Baxter",
- "lastname": "Black",
- "age": 27,
- "gender": "M",
- "address": "720 Stillwell Avenue",
- "employer": "Uplinx",
- "email": "baxterblack@uplinx.com",
- "city": "Drummond",
- "state": "MN"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "87",
- "_score": null,
- "_source": {
- "account_number": 87,
- "balance": 1133,
- "firstname": "Hewitt",
- "lastname": "Kidd",
- "age": 22,
- "gender": "M",
- "address": "446 Halleck Street",
- "employer": "Isologics",
- "email": "hewittkidd@isologics.com",
- "city": "Coalmont",
- "state": "ME"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "749",
- "_score": null,
- "_source": {
- "account_number": 749,
- "balance": 1249,
- "firstname": "Rush",
- "lastname": "Boyle",
- "age": 36,
- "gender": "M",
- "address": "310 Argyle Road",
- "employer": "Sportan",
- "email": "rushboyle@sportan.com",
- "city": "Brady",
- "state": "WA"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "315",
- "_score": null,
- "_source": {
- "account_number": 315,
- "balance": 1314,
- "firstname": "Clare",
- "lastname": "Morrow",
- "age": 33,
- "gender": "F",
- "address": "728 Madeline Court",
- "employer": "Gaptec",
- "email": "claremorrow@gaptec.com",
- "city": "Mapletown",
- "state": "PA"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "348",
- "_score": null,
- "_source": {
- "account_number": 348,
- "balance": 1360,
- "firstname": "Karina",
- "lastname": "Russell",
- "age": 37,
- "gender": "M",
- "address": "797 Moffat Street",
- "employer": "Limozen",
- "email": "karinarussell@limozen.com",
- "city": "Riegelwood",
- "state": "RI"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "490",
- "_score": null,
- "_source": {
- "account_number": 490,
- "balance": 1447,
- "firstname": "Strong",
- "lastname": "Hendrix",
- "age": 26,
- "gender": "F",
- "address": "134 Beach Place",
- "employer": "Duoflex",
- "email": "stronghendrix@duoflex.com",
- "city": "Allentown",
- "state": "ND"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "174",
- "_score": null,
- "_source": {
- "account_number": 174,
- "balance": 1464,
- "firstname": "Gamble",
- "lastname": "Pierce",
- "age": 23,
- "gender": "F",
- "address": "650 Eagle Street",
- "employer": "Matrixity",
- "email": "gamblepierce@matrixity.com",
- "city": "Abiquiu",
- "state": "OR"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "111",
- "_score": null,
- "_source": {
- "account_number": 111,
- "balance": 1481,
- "firstname": "Traci",
- "lastname": "Allison",
- "age": 35,
- "gender": "M",
- "address": "922 Bryant Street",
- "employer": "Enjola",
- "email": "traciallison@enjola.com",
- "city": "Robinette",
- "state": "OR"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ]
- }
- ]
- }
- }
高级折叠
-
- GET /bank/_search
- {
- "query": {
- "match_all": {}
- },
- "collapse" : {
- "field" : "age" ,
- <!--指定inner_hits来解释折叠 -->
- "inner_hits": {
- "name": "details", <!-- 自命名 -->
- "size": 5, <!-- 指定每组取几个文档 -->
- "sort": [{ "balance": "asc" }] <!-- 组内排序 -->
- },
- "max_concurrent_group_searches": 4 <!-- 指定组查询的并发数 -->
- },
- "sort": ["balance"]
- }
查询结果:
- {
- "took": 60,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1000,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "820",
- "_score": null,
- "_source": {
- "account_number": 820,
- "balance": 1011,
- "firstname": "Shepard",
- "lastname": "Ramsey",
- "age": 24,
- "gender": "F",
- "address": "806 Village Court",
- "employer": "Mantro",
- "email": "shepardramsey@mantro.com",
- "city": "Tibbie",
- "state": "NV"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 42,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "820",
- "_score": null,
- "_source": {
- "account_number": 820,
- "balance": 1011,
- "firstname": "Shepard",
- "lastname": "Ramsey",
- "age": 24,
- "gender": "F",
- "address": "806 Village Court",
- "employer": "Mantro",
- "email": "shepardramsey@mantro.com",
- "city": "Tibbie",
- "state": "NV"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "924",
- "_score": null,
- "_source": {
- "account_number": 924,
- "balance": 3811,
- "firstname": "Hilary",
- "lastname": "Leonard",
- "age": 24,
- "gender": "M",
- "address": "235 Hegeman Avenue",
- "employer": "Metroz",
- "email": "hilaryleonard@metroz.com",
- "city": "Roosevelt",
- "state": "ME"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "819",
- "_score": null,
- "_source": {
- "account_number": 819,
- "balance": 3971,
- "firstname": "Karyn",
- "lastname": "Medina",
- "age": 24,
- "gender": "F",
- "address": "417 Utica Avenue",
- "employer": "Qnekt",
- "email": "karynmedina@qnekt.com",
- "city": "Kerby",
- "state": "WY"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "77",
- "_score": null,
- "_source": {
- "account_number": 77,
- "balance": 5724,
- "firstname": "Byrd",
- "lastname": "Conley",
- "age": 24,
- "gender": "F",
- "address": "698 Belmont Avenue",
- "employer": "Zidox",
- "email": "byrdconley@zidox.com",
- "city": "Rockbridge",
- "state": "SC"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "493",
- "_score": null,
- "_source": {
- "account_number": 493,
- "balance": 5871,
- "firstname": "Campbell",
- "lastname": "Best",
- "age": 24,
- "gender": "M",
- "address": "297 Friel Place",
- "employer": "Fanfare",
- "email": "campbellbest@fanfare.com",
- "city": "Kidder",
- "state": "GA"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "894",
- "_score": null,
- "_source": {
- "account_number": 894,
- "balance": 1031,
- "firstname": "Tyler",
- "lastname": "Fitzgerald",
- "age": 32,
- "gender": "M",
- "address": "787 Meserole Street",
- "employer": "Jetsilk",
- "email": "tylerfitzgerald@jetsilk.com",
- "city": "Woodlands",
- "state": "WV"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 52,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "894",
- "_score": null,
- "_source": {
- "account_number": 894,
- "balance": 1031,
- "firstname": "Tyler",
- "lastname": "Fitzgerald",
- "age": 32,
- "gender": "M",
- "address": "787 Meserole Street",
- "employer": "Jetsilk",
- "email": "tylerfitzgerald@jetsilk.com",
- "city": "Woodlands",
- "state": "WV"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "402",
- "_score": null,
- "_source": {
- "account_number": 402,
- "balance": 1282,
- "firstname": "Pacheco",
- "lastname": "Rosales",
- "age": 32,
- "gender": "M",
- "address": "538 Pershing Loop",
- "employer": "Circum",
- "email": "pachecorosales@circum.com",
- "city": "Elbert",
- "state": "ID"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "735",
- "_score": null,
- "_source": {
- "account_number": 735,
- "balance": 3984,
- "firstname": "Loraine",
- "lastname": "Willis",
- "age": 32,
- "gender": "F",
- "address": "928 Grove Street",
- "employer": "Gadtron",
- "email": "lorainewillis@gadtron.com",
- "city": "Lowgap",
- "state": "NY"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "745",
- "_score": null,
- "_source": {
- "account_number": 745,
- "balance": 4572,
- "firstname": "Jacobs",
- "lastname": "Sweeney",
- "age": 32,
- "gender": "M",
- "address": "189 Lott Place",
- "employer": "Comtent",
- "email": "jacobssweeney@comtent.com",
- "city": "Advance",
- "state": "NJ"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "173",
- "_score": null,
- "_source": {
- "account_number": 173,
- "balance": 5989,
- "firstname": "Whitley",
- "lastname": "Blevins",
- "age": 32,
- "gender": "M",
- "address": "127 Brooklyn Avenue",
- "employer": "Pawnagra",
- "email": "whitleyblevins@pawnagra.com",
- "city": "Rodanthe",
- "state": "ND"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "953",
- "_score": null,
- "_source": {
- "account_number": 953,
- "balance": 1110,
- "firstname": "Baxter",
- "lastname": "Black",
- "age": 27,
- "gender": "M",
- "address": "720 Stillwell Avenue",
- "employer": "Uplinx",
- "email": "baxterblack@uplinx.com",
- "city": "Drummond",
- "state": "MN"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 39,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "953",
- "_score": null,
- "_source": {
- "account_number": 953,
- "balance": 1110,
- "firstname": "Baxter",
- "lastname": "Black",
- "age": 27,
- "gender": "M",
- "address": "720 Stillwell Avenue",
- "employer": "Uplinx",
- "email": "baxterblack@uplinx.com",
- "city": "Drummond",
- "state": "MN"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "123",
- "_score": null,
- "_source": {
- "account_number": 123,
- "balance": 3079,
- "firstname": "Cleo",
- "lastname": "Beach",
- "age": 27,
- "gender": "F",
- "address": "653 Haring Street",
- "employer": "Proxsoft",
- "email": "cleobeach@proxsoft.com",
- "city": "Greensburg",
- "state": "ME"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "637",
- "_score": null,
- "_source": {
- "account_number": 637,
- "balance": 3169,
- "firstname": "Kathy",
- "lastname": "Carter",
- "age": 27,
- "gender": "F",
- "address": "410 Jamison Lane",
- "employer": "Limage",
- "email": "kathycarter@limage.com",
- "city": "Ernstville",
- "state": "WA"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "528",
- "_score": null,
- "_source": {
- "account_number": 528,
- "balance": 4071,
- "firstname": "Thompson",
- "lastname": "Hoover",
- "age": 27,
- "gender": "F",
- "address": "580 Garden Street",
- "employer": "Portalis",
- "email": "thompsonhoover@portalis.com",
- "city": "Knowlton",
- "state": "AL"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "142",
- "_score": null,
- "_source": {
- "account_number": 142,
- "balance": 4544,
- "firstname": "Vang",
- "lastname": "Hughes",
- "age": 27,
- "gender": "M",
- "address": "357 Landis Court",
- "employer": "Bolax",
- "email": "vanghughes@bolax.com",
- "city": "Emerald",
- "state": "WY"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "87",
- "_score": null,
- "_source": {
- "account_number": 87,
- "balance": 1133,
- "firstname": "Hewitt",
- "lastname": "Kidd",
- "age": 22,
- "gender": "M",
- "address": "446 Halleck Street",
- "employer": "Isologics",
- "email": "hewittkidd@isologics.com",
- "city": "Coalmont",
- "state": "ME"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 51,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "87",
- "_score": null,
- "_source": {
- "account_number": 87,
- "balance": 1133,
- "firstname": "Hewitt",
- "lastname": "Kidd",
- "age": 22,
- "gender": "M",
- "address": "446 Halleck Street",
- "employer": "Isologics",
- "email": "hewittkidd@isologics.com",
- "city": "Coalmont",
- "state": "ME"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "411",
- "_score": null,
- "_source": {
- "account_number": 411,
- "balance": 1172,
- "firstname": "Guzman",
- "lastname": "Whitfield",
- "age": 22,
- "gender": "M",
- "address": "181 Perry Terrace",
- "employer": "Springbee",
- "email": "guzmanwhitfield@springbee.com",
- "city": "Balm",
- "state": "IN"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "159",
- "_score": null,
- "_source": {
- "account_number": 159,
- "balance": 1696,
- "firstname": "Alvarez",
- "lastname": "Mack",
- "age": 22,
- "gender": "F",
- "address": "897 Manor Court",
- "employer": "Snorus",
- "email": "alvarezmack@snorus.com",
- "city": "Rosedale",
- "state": "CA"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "220",
- "_score": null,
- "_source": {
- "account_number": 220,
- "balance": 3086,
- "firstname": "Tania",
- "lastname": "Middleton",
- "age": 22,
- "gender": "F",
- "address": "541 Gunther Place",
- "employer": "Zerology",
- "email": "taniamiddleton@zerology.com",
- "city": "Linwood",
- "state": "IN"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "350",
- "_score": null,
- "_source": {
- "account_number": 350,
- "balance": 4267,
- "firstname": "Wyatt",
- "lastname": "Wise",
- "age": 22,
- "gender": "F",
- "address": "896 Bleecker Street",
- "employer": "Rockyard",
- "email": "wyattwise@rockyard.com",
- "city": "Joes",
- "state": "MS"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "749",
- "_score": null,
- "_source": {
- "account_number": 749,
- "balance": 1249,
- "firstname": "Rush",
- "lastname": "Boyle",
- "age": 36,
- "gender": "M",
- "address": "310 Argyle Road",
- "employer": "Sportan",
- "email": "rushboyle@sportan.com",
- "city": "Brady",
- "state": "WA"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 52,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "749",
- "_score": null,
- "_source": {
- "account_number": 749,
- "balance": 1249,
- "firstname": "Rush",
- "lastname": "Boyle",
- "age": 36,
- "gender": "M",
- "address": "310 Argyle Road",
- "employer": "Sportan",
- "email": "rushboyle@sportan.com",
- "city": "Brady",
- "state": "WA"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "427",
- "_score": null,
- "_source": {
- "account_number": 427,
- "balance": 1463,
- "firstname": "Rebekah",
- "lastname": "Garrison",
- "age": 36,
- "gender": "F",
- "address": "837 Hampton Avenue",
- "employer": "Niquent",
- "email": "rebekahgarrison@niquent.com",
- "city": "Zarephath",
- "state": "NY"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "782",
- "_score": null,
- "_source": {
- "account_number": 782,
- "balance": 3960,
- "firstname": "Maldonado",
- "lastname": "Craig",
- "age": 36,
- "gender": "F",
- "address": "345 Myrtle Avenue",
- "employer": "Zilencio",
- "email": "maldonadocraig@zilencio.com",
- "city": "Yukon",
- "state": "ID"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "6",
- "_score": null,
- "_source": {
- "account_number": 6,
- "balance": 5686,
- "firstname": "Hattie",
- "lastname": "Bond",
- "age": 36,
- "gender": "M",
- "address": "671 Bristol Street",
- "employer": "Netagy",
- "email": "hattiebond@netagy.com",
- "city": "Dante",
- "state": "TN"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "170",
- "_score": null,
- "_source": {
- "account_number": 170,
- "balance": 6025,
- "firstname": "Mann",
- "lastname": "Madden",
- "age": 36,
- "gender": "F",
- "address": "161 Radde Place",
- "employer": "Farmex",
- "email": "mannmadden@farmex.com",
- "city": "Thermal",
- "state": "LA"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "315",
- "_score": null,
- "_source": {
- "account_number": 315,
- "balance": 1314,
- "firstname": "Clare",
- "lastname": "Morrow",
- "age": 33,
- "gender": "F",
- "address": "728 Madeline Court",
- "employer": "Gaptec",
- "email": "claremorrow@gaptec.com",
- "city": "Mapletown",
- "state": "PA"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 50,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "315",
- "_score": null,
- "_source": {
- "account_number": 315,
- "balance": 1314,
- "firstname": "Clare",
- "lastname": "Morrow",
- "age": 33,
- "gender": "F",
- "address": "728 Madeline Court",
- "employer": "Gaptec",
- "email": "claremorrow@gaptec.com",
- "city": "Mapletown",
- "state": "PA"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "118",
- "_score": null,
- "_source": {
- "account_number": 118,
- "balance": 2223,
- "firstname": "Ballard",
- "lastname": "Vasquez",
- "age": 33,
- "gender": "F",
- "address": "101 Bush Street",
- "employer": "Intergeek",
- "email": "ballardvasquez@intergeek.com",
- "city": "Century",
- "state": "MN"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "786",
- "_score": null,
- "_source": {
- "account_number": 786,
- "balance": 3024,
- "firstname": "Rene",
- "lastname": "Vang",
- "age": 33,
- "gender": "M",
- "address": "506 Randolph Street",
- "employer": "Isopop",
- "email": "renevang@isopop.com",
- "city": "Vienna",
- "state": "NJ"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "932",
- "_score": null,
- "_source": {
- "account_number": 932,
- "balance": 3111,
- "firstname": "Summer",
- "lastname": "Porter",
- "age": 33,
- "gender": "F",
- "address": "949 Grand Avenue",
- "employer": "Multiflex",
- "email": "summerporter@multiflex.com",
- "city": "Spokane",
- "state": "OK"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "587",
- "_score": null,
- "_source": {
- "account_number": 587,
- "balance": 3468,
- "firstname": "Carly",
- "lastname": "Johns",
- "age": 33,
- "gender": "M",
- "address": "390 Noll Street",
- "employer": "Gallaxia",
- "email": "carlyjohns@gallaxia.com",
- "city": "Emison",
- "state": "DC"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "348",
- "_score": null,
- "_source": {
- "account_number": 348,
- "balance": 1360,
- "firstname": "Karina",
- "lastname": "Russell",
- "age": 37,
- "gender": "M",
- "address": "797 Moffat Street",
- "employer": "Limozen",
- "email": "karinarussell@limozen.com",
- "city": "Riegelwood",
- "state": "RI"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 42,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "348",
- "_score": null,
- "_source": {
- "account_number": 348,
- "balance": 1360,
- "firstname": "Karina",
- "lastname": "Russell",
- "age": 37,
- "gender": "M",
- "address": "797 Moffat Street",
- "employer": "Limozen",
- "email": "karinarussell@limozen.com",
- "city": "Riegelwood",
- "state": "RI"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "663",
- "_score": null,
- "_source": {
- "account_number": 663,
- "balance": 2456,
- "firstname": "Rollins",
- "lastname": "Richards",
- "age": 37,
- "gender": "M",
- "address": "129 Sullivan Place",
- "employer": "Geostele",
- "email": "rollinsrichards@geostele.com",
- "city": "Morgandale",
- "state": "FL"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "699",
- "_score": null,
- "_source": {
- "account_number": 699,
- "balance": 4156,
- "firstname": "Gallagher",
- "lastname": "Marshall",
- "age": 37,
- "gender": "F",
- "address": "648 Clifford Place",
- "employer": "Exiand",
- "email": "gallaghermarshall@exiand.com",
- "city": "Belfair",
- "state": "KY"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "161",
- "_score": null,
- "_source": {
- "account_number": 161,
- "balance": 4659,
- "firstname": "Doreen",
- "lastname": "Randall",
- "age": 37,
- "gender": "F",
- "address": "178 Court Street",
- "employer": "Calcula",
- "email": "doreenrandall@calcula.com",
- "city": "Belmont",
- "state": "TX"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "258",
- "_score": null,
- "_source": {
- "account_number": 258,
- "balance": 5712,
- "firstname": "Lindsey",
- "lastname": "Hawkins",
- "age": 37,
- "gender": "M",
- "address": "706 Frost Street",
- "employer": "Enormo",
- "email": "lindseyhawkins@enormo.com",
- "city": "Gardners",
- "state": "AK"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "490",
- "_score": null,
- "_source": {
- "account_number": 490,
- "balance": 1447,
- "firstname": "Strong",
- "lastname": "Hendrix",
- "age": 26,
- "gender": "F",
- "address": "134 Beach Place",
- "employer": "Duoflex",
- "email": "stronghendrix@duoflex.com",
- "city": "Allentown",
- "state": "ND"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 59,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "490",
- "_score": null,
- "_source": {
- "account_number": 490,
- "balance": 1447,
- "firstname": "Strong",
- "lastname": "Hendrix",
- "age": 26,
- "gender": "F",
- "address": "134 Beach Place",
- "employer": "Duoflex",
- "email": "stronghendrix@duoflex.com",
- "city": "Allentown",
- "state": "ND"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "280",
- "_score": null,
- "_source": {
- "account_number": 280,
- "balance": 3380,
- "firstname": "Vilma",
- "lastname": "Shields",
- "age": 26,
- "gender": "F",
- "address": "133 Berriman Street",
- "employer": "Applidec",
- "email": "vilmashields@applidec.com",
- "city": "Adamstown",
- "state": "ME"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "596",
- "_score": null,
- "_source": {
- "account_number": 596,
- "balance": 4063,
- "firstname": "Letitia",
- "lastname": "Walker",
- "age": 26,
- "gender": "F",
- "address": "963 Vanderveer Place",
- "employer": "Zizzle",
- "email": "letitiawalker@zizzle.com",
- "city": "Rossmore",
- "state": "ID"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "780",
- "_score": null,
- "_source": {
- "account_number": 780,
- "balance": 4682,
- "firstname": "Maryanne",
- "lastname": "Hendricks",
- "age": 26,
- "gender": "F",
- "address": "709 Wolcott Street",
- "employer": "Sarasonic",
- "email": "maryannehendricks@sarasonic.com",
- "city": "Santel",
- "state": "NH"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "405",
- "_score": null,
- "_source": {
- "account_number": 405,
- "balance": 5679,
- "firstname": "Strickland",
- "lastname": "Fuller",
- "age": 26,
- "gender": "M",
- "address": "990 Concord Street",
- "employer": "Digique",
- "email": "stricklandfuller@digique.com",
- "city": "Southmont",
- "state": "NV"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "174",
- "_score": null,
- "_source": {
- "account_number": 174,
- "balance": 1464,
- "firstname": "Gamble",
- "lastname": "Pierce",
- "age": 23,
- "gender": "F",
- "address": "650 Eagle Street",
- "employer": "Matrixity",
- "email": "gamblepierce@matrixity.com",
- "city": "Abiquiu",
- "state": "OR"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 42,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "174",
- "_score": null,
- "_source": {
- "account_number": 174,
- "balance": 1464,
- "firstname": "Gamble",
- "lastname": "Pierce",
- "age": 23,
- "gender": "F",
- "address": "650 Eagle Street",
- "employer": "Matrixity",
- "email": "gamblepierce@matrixity.com",
- "city": "Abiquiu",
- "state": "OR"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "110",
- "_score": null,
- "_source": {
- "account_number": 110,
- "balance": 4850,
- "firstname": "Daphne",
- "lastname": "Byrd",
- "age": 23,
- "gender": "F",
- "address": "239 Conover Street",
- "employer": "Freakin",
- "email": "daphnebyrd@freakin.com",
- "city": "Taft",
- "state": "MN"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "900",
- "_score": null,
- "_source": {
- "account_number": 900,
- "balance": 6124,
- "firstname": "Gonzalez",
- "lastname": "Watson",
- "age": 23,
- "gender": "M",
- "address": "624 Sullivan Street",
- "employer": "Marvane",
- "email": "gonzalezwatson@marvane.com",
- "city": "Wikieup",
- "state": "IL"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "443",
- "_score": null,
- "_source": {
- "account_number": 443,
- "balance": 7588,
- "firstname": "Huff",
- "lastname": "Thomas",
- "age": 23,
- "gender": "M",
- "address": "538 Erskine Loop",
- "employer": "Accufarm",
- "email": "huffthomas@accufarm.com",
- "city": "Corinne",
- "state": "AL"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "643",
- "_score": null,
- "_source": {
- "account_number": 643,
- "balance": 8057,
- "firstname": "Hendricks",
- "lastname": "Stokes",
- "age": 23,
- "gender": "F",
- "address": "142 Barbey Street",
- "employer": "Remotion",
- "email": "hendricksstokes@remotion.com",
- "city": "Lewis",
- "state": "MA"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "111",
- "_score": null,
- "_source": {
- "account_number": 111,
- "balance": 1481,
- "firstname": "Traci",
- "lastname": "Allison",
- "age": 35,
- "gender": "M",
- "address": "922 Bryant Street",
- "employer": "Enjola",
- "email": "traciallison@enjola.com",
- "city": "Robinette",
- "state": "OR"
- },
- "fields": {
- "age": [
- ]
- },
- "sort": [
- ],
- "inner_hits": {
- "details": {
- "hits": {
- "total": 52,
- "max_score": null,
- "hits": [
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "111",
- "_score": null,
- "_source": {
- "account_number": 111,
- "balance": 1481,
- "firstname": "Traci",
- "lastname": "Allison",
- "age": 35,
- "gender": "M",
- "address": "922 Bryant Street",
- "employer": "Enjola",
- "email": "traciallison@enjola.com",
- "city": "Robinette",
- "state": "OR"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "417",
- "_score": null,
- "_source": {
- "account_number": 417,
- "balance": 1788,
- "firstname": "Wheeler",
- "lastname": "Ayers",
- "age": 35,
- "gender": "F",
- "address": "677 Hope Street",
- "employer": "Fortean",
- "email": "wheelerayers@fortean.com",
- "city": "Ironton",
- "state": "PA"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "984",
- "_score": null,
- "_source": {
- "account_number": 984,
- "balance": 1904,
- "firstname": "Viola",
- "lastname": "Crawford",
- "age": 35,
- "gender": "F",
- "address": "354 Linwood Street",
- "employer": "Ginkle",
- "email": "violacrawford@ginkle.com",
- "city": "Witmer",
- "state": "AR"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "527",
- "_score": null,
- "_source": {
- "account_number": 527,
- "balance": 2028,
- "firstname": "Carver",
- "lastname": "Peters",
- "age": 35,
- "gender": "M",
- "address": "816 Victor Road",
- "employer": "Housedown",
- "email": "carverpeters@housedown.com",
- "city": "Nadine",
- "state": "MD"
- },
- "sort": [
- ]
- },
- {
- "_index": "bank",
- "_type": "_doc",
- "_id": "266",
- "_score": null,
- "_source": {
- "account_number": 266,
- "balance": 2777,
- "firstname": "Monique",
- "lastname": "Conner",
- "age": 35,
- "gender": "F",
- "address": "489 Metrotech Courtr",
- "employer": "Flotonic",
- "email": "moniqueconner@flotonic.com",
- "city": "Retsof",
- "state": "MD"
- },
- "sort": [
- ]
- }
- ]
- }
- }
- }
- }
- ]
- }
- }
在inner_hits 中返回多个角度的组内topN
-
- GET /twitter/_search
- {
- "query": {
- "match": {
- "message": "elasticsearch"
- }
- },
- "collapse" : {
- "field" : "user",
- "inner_hits": [
- {
- "name": "most_liked",
- "size": 3,
- "sort": ["likes"]
- },
- {
- "name": "most_recent",
- "size": 3,
- "sort": [{ "date": "asc" }]
- }
- ]
- },
- "sort": ["likes"]
- }
说明:
most_liked:最像
most_recent:最近一段时间的
6.3.1 分页
from and size
-
- GET /_search
- {
- "from" : 0, "size" : 10,
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
注意:搜索请求耗用的堆内存和时间与 from + size 大小成正比。分页越深耗用越大,为了不因分页导致OOM或严重影响性能,ES中规定from + size 不能大于索引setting参数 index.max_result_window 的值,默认值为 10,000。
需要深度分页, 不受index.max_result_window 限制,怎么办?
Search after 在指定文档后取文档, 可用于深度分页
首次查询第一页
-
- GET twitter/_search
- {
- "size": 10,
- "query": {
- "match" : {
- "title" : "elasticsearch"
- }
- },
- "sort": [
- {"date": "asc"},
- {"_id": "desc"}
- ]
- }
后续页的查询
-
- GET twitter/_search
- {
- "size": 10,
- "query": {
- "match" : {
- "title" : "elasticsearch"
- }
- },
- "search_after": [1463538857, "654323"],
- "sort": [
- {"date": "asc"},
- {"_id": "desc"}
- ]
- }
注意:使用search_after,要求查询必须指定排序,并且这个排序组合值每个文档唯一(最好排序中包含_id字段)。 search_after的值用的就是这个排序值。 用search_after时 from 只能为0、-1。
6.3.2 高亮
准备数据:
- PUT /hl_test/_doc/1
- {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
查询高亮数据
-
- GET /hl_test/_search
- {
- "query": {
- "match": {
- "title": "lucene"
- }
- },
- "highlight": {
- "fields": {
- "title": {},
- "content": {}
- }
- }
- }
查询结果:
-
- {
- "took": 113,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.2876821,
- "hits": [
- {
- "_index": "hl_test",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.2876821,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- },
- "highlight": {
- "title": [
- "<em>lucene</em> solr and elasticsearch"
- ]
- }
- }
- ]
- }
- }
多字段高亮
-
- GET /hl_test/_search
- {
- "query": {
- "match": {
- "title": "lucene"
- }
- },
- "highlight": {
- "require_field_match": false,
- "fields": {
- "title": {},
- "content": {}
- }
- }
- }
查询结果:
-
- {
- "took": 5,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.2876821,
- "hits": [
- {
- "_index": "hl_test",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.2876821,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- },
- "highlight": {
- "title": [
- "<em>lucene</em> solr and elasticsearch"
- ],
- "content": [
- "<em>lucene</em> solr and elasticsearch for search"
- ]
- }
- }
- ]
- }
- }
说明:
高亮结果在返回的每个文档中以hightlight节点给出
指定高亮标签
-
- GET /hl_test/_search
- {
- "query": {
- "match": {
- "title": "lucene"
- }
- },
- "highlight": {
- "require_field_match": false,
- "fields": {
- "title": {
- "pre_tags":["<strong>"],
- "post_tags": ["</strong>"]
- },
- "content": {}
- }
- }
- }
查询结果:
-
- {
- "took": 5,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.2876821,
- "hits": [
- {
- "_index": "hl_test",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.2876821,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- },
- "highlight": {
- "title": [
- "<strong>lucene</strong> solr and elasticsearch"
- ],
- "content": [
- "<em>lucene</em> solr and elasticsearch for search"
- ]
- }
- }
- ]
- }
- }
高亮的详细设置请参考官网:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html
6.3.3 Profile 为了调试、优化
对于执行缓慢的查询,我们很想知道它为什么慢,时间都耗在哪了,可以在查询上加入上 profile 来获得详细的执行步骤、耗时信息。
-
- GET /twitter/_search
- {
- "profile": true,
- "query" : {
- "match" : { "message" : "some number" }
- }
- }
信息的说明请参考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html
-
- PUT /twitter/_doc/1?refresh
- {
- "user": "kimchy"
- }
-
- GET /twitter/_doc/_count?q=user:kimchy
-
- GET /twitter/_doc/_count
- {
- "query" : {
- "term" : { "user" : "kimchy" }
- }
- }
结果说明:
-
- {
- "count" : 1,
- "_shards" : {
- "total" : 5,
- "successful" : 5,
- "skipped" : 0,
- "failed" : 0
- }
- }
用来检查我们的查询是否正确,以及查看底层生成查询是怎样的
GET twitter/_validate/query?q=user:foo
8.1 校验查询
-
- GET twitter/_doc/_validate/query
- {
- "query": {
- "query_string": {
- "query": "post_date:foo",
- "lenient": false
- }
- }
- }
查询结果:
-
- {
- "valid": true,
- "_shards": {
- "total": 1,
- "successful": 1,
- "failed": 0
- }
- }
8.2 获得查询解释
-
- GET twitter/_doc/_validate/query?explain=true
- {
- "query": {
- "query_string": {
- "query": "post_date:foo",
- "lenient": false
- }
- }
- }
查询结果
-
- {
- "valid": true,
- "_shards": {
- "total": 1,
- "successful": 1,
- "failed": 0
- },
- "explanations": [
- {
- "index": "twitter",
- "valid": true,
- "explanation": """+MatchNoDocsQuery("unmapped field [post_date]") #MatchNoDocsQuery("Type list does not contain the index type")"""
- }
- ]
- }
8.3 用rewrite获得比explain 更详细的解释
-
- GET twitter/_doc/_validate/query?rewrite=true
- {
- "query": {
- "more_like_this": {
- "like": {
- "_id": "2"
- },
- "boost_terms": 1
- }
- }
- }
查询结果:
-
- {
- "valid": true,
- "_shards": {
- "total": 1,
- "successful": 1,
- "failed": 0
- },
- "explanations": [
- {
- "index": "twitter",
- "valid": true,
- "explanation": """+(MatchNoDocsQuery("empty BooleanQuery") -ConstantScore(MatchNoDocsQuery("empty BooleanQuery"))) #MatchNoDocsQuery("Type list does not contain the index type")"""
- }
- ]
- }
8.4 获得所有分片上的查询解释
-
- GET twitter/_doc/_validate/query?rewrite=true&all_shards=true
- {
- "query": {
- "match": {
- "user": {
- "query": "kimchy",
- "fuzziness": "auto"
- }
- }
- }
- }
查询结果:
-
- {
- "valid": true,
- "_shards": {
- "total": 3,
- "successful": 3,
- "failed": 0
- },
- "explanations": [
- {
- "index": "twitter",
- "shard": 0,
- "valid": true,
- "explanation": """MatchNoDocsQuery("unmapped field [user]")"""
- },
- {
- "index": "twitter",
- "shard": 1,
- "valid": true,
- "explanation": """MatchNoDocsQuery("unmapped field [user]")"""
- },
- {
- "index": "twitter",
- "shard": 2,
- "valid": true,
- "explanation": """MatchNoDocsQuery("unmapped field [user]")"""
- }
- ]
- }
官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-validate.html
获得某个查询的评分解释,及某个文档是否被这个查询命中
- GET /twitter/_doc/0/_explain
- {
- "query" : {
- "match" : { "message" : "elasticsearch" }
- }
- }
官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
让我们可以了解可执行查询的索引分片节点情况
GET /twitter/_search_shards
查询结果:
- {
- "nodes": {
- "qkmtovyLRPWjXcfDTryNwA": {
- "name": "qkmtovy",
- "ephemeral_id": "sxgsvzsORraAnN7PIlMYpg",
- "transport_address": "127.0.0.1:9300",
- "attributes": {}
- }
- },
- "indices": {
- "twitter": {}
- },
- "shards": [
- [
- {
- "state": "STARTED",
- "primary": true,
- "node": "qkmtovyLRPWjXcfDTryNwA",
- "relocating_node": null,
- "shard": 0,
- "index": "twitter",
- "allocation_id": {
- "id": "3Yf6lOjyQja_v4yP_gL8qA"
- }
- }
- ],
- [
- {
- "state": "STARTED",
- "primary": true,
- "node": "qkmtovyLRPWjXcfDTryNwA",
- "relocating_node": null,
- "shard": 1,
- "index": "twitter",
- "allocation_id": {
- "id": "8S88pnUkSSy8kiCcwBgb9Q"
- }
- }
- ],
- [
- {
- "state": "STARTED",
- "primary": true,
- "node": "qkmtovyLRPWjXcfDTryNwA",
- "relocating_node": null,
- "shard": 2,
- "index": "twitter",
- "allocation_id": {
- "id": "_uIup55LQZKaltUfuh5aFA"
- }
- }
- ]
- ]
- }
想知道指定routing值的查询将在哪些分片节点上执行
GET /twitter/_search_shards?routing=foo,baz
查询结果:
-
- {
- "nodes": {
- "qkmtovyLRPWjXcfDTryNwA": {
- "name": "qkmtovy",
- "ephemeral_id": "sxgsvzsORraAnN7PIlMYpg",
- "transport_address": "127.0.0.1:9300",
- "attributes": {}
- }
- },
- "indices": {
- "twitter": {}
- },
- "shards": [
- [
- {
- "state": "STARTED",
- "primary": true,
- "node": "qkmtovyLRPWjXcfDTryNwA",
- "relocating_node": null,
- "shard": 1,
- "index": "twitter",
- "allocation_id": {
- "id": "8S88pnUkSSy8kiCcwBgb9Q"
- }
- }
- ]
- ]
- }
注册一个模板
-
- POST _scripts/<templatename>
- {
- "script": {
- "lang": "mustache",
- "source": {
- "query": {
- "match": {
- "title": "{{query_string}}"
- }
- }
- }
- }
- }
使用模板进行查询
-
- GET _search/template
- {
- "id": "<templateName>",
- "params": {
- "query_string": "search for these words"
- }
- }
查询结果:
-
- {
- "took": 11,
- "timed_out": false,
- "_shards": {
- "total": 38,
- "successful": 38,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 0,
- "max_score": null,
- "hits": []
- }
- }
详细了解请参考官网:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html
官网介绍链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
Domain Specific Language:领域特定语言
Elasticsearch基于JSON提供完整的查询DSL来定义查询。
一个查询可由两部分字句构成:
Leaf query clauses 叶子查询字句
Leaf query clauses 在指定的字段上查询指定的值, 如:match, term or range queries. 叶子字句可以单独使用.
Compound query clauses 复合查询字句
以逻辑方式组合多个叶子、复合查询为一个查询
一个查询字句的行为取决于它是用在query context 还是 filter context 中 。
Query context 查询上下文
用在查询上下文中的字句回答“这个文档有多匹配这个查询?”。除了决定文档是否匹配,字句匹配的文档还会计算一个字句评分,来评定文档有多匹配。查询上下文由 query 元素表示。
Filter context 过滤上下文
过滤上下文由 filter 元素或 bool 中的 must not 表示。用在过滤上下文中的字句回答“这个文档是否匹配这个查询?”,不参与相关性评分。
被频繁使用的过滤器将被ES自动缓存,来提高查询性能。
示例:
-
- GET /_search
- {
- <!--查询 -->
- "query": {
- "bool": {
- "must": [
- { "match": { "title": "Search" }},
- { "match": { "content": "Elasticsearch" }}
- ],
- <!--过滤 -->
- "filter": [
- { "term": { "status": "published" }},
- { "range": { "publish_date": { "gte": "2015-01-01" }}}
- ]
- }
- }
- }
说明:查询和过滤都是对所有文档进行查询,最后两个结果取交集
提示:在查询上下文中使用查询子句来表示影响匹配文档得分的条件,并在过滤上下文中使用所有其他查询子句。
- GET /_search
- {
- "query": {
- "match_all": {}
- }
- }
相反,什么都不查
- GET /_search
- {
- "query": {
- "match_none": {}
- }
- }
全文查询,用于对分词的字段进行搜索。会用查询字段的分词器对查询的文本进行分词生成查询。可用于短语查询、模糊查询、前缀查询、临近查询等查询场景
官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html
全文查询的标准查询,它可以对一个字段进行模糊、短语查询。 match queries 接收 text/numerics/dates, 对它们进行分词分析, 再组织成一个boolean查询。可通过operator 指定bool组合操作(or、and 默认是 or ), 以及minimum_should_match 指定至少需多少个should(or)字句需满足。还可用ananlyzer指定查询用的特殊分析器。
-
- GET /_search
- {
- "query": {
- "match" : {
- "message" : "this is a test"
- }
- }
- }
说明:message是字段名
官网链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
示例:
构造索引和数据:
-
- PUT /ftq/_doc/1
- {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
-
- PUT /ftq/_doc/2
- {
- "title": "java spring boot",
- "content": "lucene is writerd by java"
- }
执行查询1
-
- GET ftq/_doc/_validate/query?rewrite=true
- {
- "query": {
- "match": {
- "title": "lucene java"
- }
- }
- }
查询结果1:
-
- {
- "valid": true,
- "_shards": {
- "total": 1,
- "successful": 1,
- "failed": 0
- },
- "explanations": [
- {
- "index": "ftq",
- "valid": true,
- "explanation": "title:lucene title:java"
- }
- ]
- }
执行查询2:
-
- GET ftq/_search
- {
- "query": {
- "match": {
- "title": "lucene java"
- }
- }
- }
查询结果2:
-
- {
- "took": 6,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 2,
- "max_score": 0.2876821,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "2",
- "_score": 0.2876821,
- "_source": {
- "title": "java spring boot",
- "content": "lucene is writerd by java"
- }
- },
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.2876821,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
- }
- ]
- }
- }
执行查询3:指定操作符
-
- GET ftq/_search
- {
- "query": {
- "match": {
- "title": {
- "query": "lucene java",
- "operator": "and"
- }
- }
- }
- }
查询结果3:
-
- {
- "took": 4,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 0,
- "max_score": null,
- "hits": []
- }
- }
模糊查询,最大编辑数为2
-
- GET ftq/_search
- {
- "query": {
- "match": {
- "title": {
- "query": "ucen elatic",
- "fuzziness": 2
- }
- }
- }
- }
模糊查询结果:
-
- {
- "took": 280,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.14384104,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.14384104,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
- }
- ]
- }
- }
指定最少需满足两个词匹配
-
- GET ftq/_search
- {
- "query": {
- "match": {
- "content": {
- "query": "ucen elatic java",
- "fuzziness": 2,
- "minimum_should_match": 2
- }
- }
- }
- }
查询结果:
-
- {
- "took": 19,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.43152314,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "2",
- "_score": 0.43152314,
- "_source": {
- "title": "java spring boot",
- "content": "lucene is writerd by java"
- }
- }
- ]
- }
- }
可用max_expansions 指定模糊匹配的最大词项数,默认是50。比如:反向索引中有 100 个词项与 ucen 模糊匹配,只选用前50 个。
match_phrase 查询用来对一个字段进行短语查询,可以指定 analyzer、slop移动因子。
对字段进行短语查询1:
GET ftq/_search { "query": { "match_phrase": { "title": "lucene solr" } } }
结果1:
-
- {
- "took": 3,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.5753642,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.5753642,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
- }
- ]
- }
- }
对字段进行短语查询2:
- GET ftq/_search
- {
- "query": {
- "match_phrase": {
- "title": "lucene elasticsearch"
- }
- }
- }
结果2:
-
- {
- "took": 3,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 0,
- "max_score": null,
- "hits": []
- }
- }
对查询指定移动因子:
GET ftq/_search { "query": { "match_phrase": { "title": { "query": "lucene elasticsearch", "slop": 2 } } } }
查询结果:
-
- {
- "took": 2174,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 0.27517417,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.27517417,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
- }
- ]
- }
- }
match_phrase_prefix 在 match_phrase 的基础上支持对短语的最后一个词进行前缀匹配
GET /_search { "query": { "match_phrase_prefix" : { "message" : "quick brown f" } } }
指定前缀匹配选用的最大词项数量
-
- GET /_search
- {
- "query": {
- "match_phrase_prefix" : {
- "message" : {
- "query" : "quick brown f",
- "max_expansions" : 10
- }
- }
- }
- }
如果你需要在多个字段上进行文本搜索,可用multi_match 。 multi_match在 match的基础上支持对多个字段进行文本查询。
查询1:
-
- GET ftq/_search
- {
- "query": {
- "multi_match" : {
- "query": "lucene java",
- "fields": [ "title", "content" ]
- }
- }
- }
结果1:
-
- {
- "took": 1973,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 2,
- "max_score": 0.5753642,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "2",
- "_score": 0.5753642,
- "_source": {
- "title": "java spring boot",
- "content": "lucene is writerd by java"
- }
- },
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.2876821,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
- }
- ]
- }
- }
查询2:字段通配符查询
-
- GET ftq/_search
- {
- "query": {
- "multi_match" : {
- "query": "lucene java",
- "fields": [ "title", "cont*" ]
- }
- }
- }
结果2:
-
- {
- "took": 5,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 2,
- "max_score": 0.5753642,
- "hits": [
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "2",
- "_score": 0.5753642,
- "_source": {
- "title": "java spring boot",
- "content": "lucene is writerd by java"
- }
- },
- {
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 0.2876821,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- }
- }
- ]
- }
- }
查询3:给字段的相关性评分加权重
GET ftq/_search?explain=true { "query": { "multi_match" : { "query": "lucene elastic", "fields": [ "title^5", "content" ] } } }
结果3:
- {
- "took": 6,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 2,
- "max_score": 1.4384104,
- "hits": [
- {
- "_shard": "[ftq][3]",
- "_node": "qkmtovyLRPWjXcfDTryNwA",
- "_index": "ftq",
- "_type": "_doc",
- "_id": "1",
- "_score": 1.4384104,
- "_source": {
- "title": "lucene solr and elasticsearch",
- "content": "lucene solr and elasticsearch for search"
- },
- "_explanation": {
- "value": 1.4384104,
- "description": "max of:",
- "details": [
- {
- "value": 1.4384104,
- "description": "sum of:",
- "details": [
- {
- "value": 1.4384104,
- "description": "weight(title:lucene in 0) [PerFieldSimilarity], result of:",
- "details": [
- {
- "value": 1.4384104,
- "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
- "details": [
- {
- "value": 5,
- "description": "boost",
- "details": []
- },
- {
- "value": 0.2876821,
- "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
- "details": [
- {
- "value": 1,
- "description": "docFreq",
- "details": []
- },
- {
- "value": 1,
- "description": "docCount",
- "details": []
- }
- ]
- },
- {
- "value": 1,
- "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
- "details": [
- {
- "value": 1,
- "description": "termFreq=1.0",
- "details": []
- },
- {
- "value": 1.2,
- "description": "parameter k1",
- "details": []
- },
- {
- "value": 0.75,
- "description": "parameter b",
- "details": []
- },
- {
- "value": 4,
- "description": "avgFieldLength",
- "details": []
- },
- {
- "value": 4,
- "description": "fieldLength",
- "details": []
- }
- ]
- }
- ]
- }
- ]
- }
- ]
- },
- {
- "value": 0.2876821,
- "description": "sum of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "weight(content:lucene in 0) [PerFieldSimilarity], result of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
- "details": [
- {
- "value": 1,
- "description": "docFreq",
- "details": []
- },
- {
- "value": 1,
- "description": "docCount",
- "details": []
- }
- ]
- },
- {
- "value": 1,
- "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
- "details": [
- {
- "value": 1,
- "description": "termFreq=1.0",
- "details": []
- },
- {
- "value": 1.2,
- "description": "parameter k1",
- "details": []
- },
- {
- "value": 0.75,
- "description": "parameter b",
- "details": []
- },
- {
- "value": 6,
- "description": "avgFieldLength",
- "details": []
- },
- {
- "value": 6,
- "description": "fieldLength",
- "details": []
- }
- ]
- }
- ]
- }
- ]
- }
- ]
- }
- ]
- }
- },
- {
- "_shard": "[ftq][2]",
- "_node": "qkmtovyLRPWjXcfDTryNwA",
- "_index": "ftq",
- "_type": "_doc",
- "_id": "2",
- "_score": 0.2876821,
- "_source": {
- "title": "java spring boot",
- "content": "lucene is writerd by java"
- },
- "_explanation": {
- "value": 0.2876821,
- "description": "max of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "sum of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "weight(content:lucene in 0) [PerFieldSimilarity], result of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
- "details": [
- {
- "value": 0.2876821,
- "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
- "details": [
- {
- "value": 1,
- "description": "docFreq",
- "details": []
- },
- {
- "value": 1,
- "description": "docCount",
- "details": []
- }
- ]
- },
- {
- "value": 1,
- "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
- "details": [
- {
- "value": 1,
- "description": "termFreq=1.0",
- "details": []
- },
- {
- "value": 1.2,
- "description": "parameter k1",
- "details": []
- },
- {
- "value": 0.75,
- "description": "parameter b",
- "details": []
- },
- {
- "value": 5,
- "description": "avgFieldLength",
- "details": []
- },
- {
- "value": 5,
- "description": "fieldLength",
- "details": []
- }
- ]
- }
- ]
- }
- ]
- }
- ]
- }
- ]
- }
- }
- ]
- }
- }
common 常用词查询
问1、什么是停用词?索引时做停用词处理的目的是什么?
不再使用的词,做停用词处理的目的是提高索引的效率,去掉不需要的索引操作,即停用词不需要索引
问2、如果在索引时应用停用词处理,下面的两个查询会查询什么词项?
the brown fox—— brown fox
not happy——happy
问3、索引时应用停用词处理对搜索精度是否有影响?如果不做停用词处理又会有什么影响?如何协调这两个问题?如何保证搜索的精确度又兼顾搜索性能?
索引时应用停用词处理对搜索精度有影响,不做停用词处理又会影响索引的效率,要协调这两个问题就必须要使用tf-idf 相关性计算模型
7.1 tf-idf 相关性计算模型简介
tf:term frequency 词频 :指一个词在一篇文档中出现的频率。
如“世界杯”在文档A中出现3次,那么可以定义“世界杯”在文档A中的词频为3。请问在一篇3000字的文章中出现“世界杯”3次和一篇150字的文章中出现3词,哪篇文章更是与“世界杯”有关的。也就是说,简单用出现次数作为频率不够准确。那就用占比来表示:
问:tf值越大是否就一定说明这个词更相关?
不是,出现太多了说明不重要
说明:tf的计算不一定非是这样的,可以定义不同的计算方式。
df:document frequency 词的文档频率 :指包含某个词的文档数(有多少文档中包含这个词)。 df越大的词越常见,哪些词会是高频词?
问1:词的df值越大说明这个词在这个文档集中是越重要还是越不重要?
越不重要
问2:词t的tf高,在文档集中的重要性也高,是否说明文档与该词越相关?举例:整个文档集中只有3篇文档中有“世界杯”,文档A中就出现了“世界杯”好几次。
不能说明文档与该词越相关
问3:如何用数值体现词t在文档集中的重要性?df可以吗?
不可以
idf:inverse document frequency 词的逆文档频率 :用来表示词在文档集中的重要性。文档总数/ df ,df越小,词越重要,这个值会很大,那就对它取个自然对数,将值映射到一个较小的取值范围。
说明: +1 是为了避免除0(即词t在文档集中未出现的情况)
tf-idf 相关性性计算模型:tf-idf t = tf t,d * idf t
说明: tf-idf 相关性性计算模型的值为词频( tf t,d)乘以词的逆文档频率(idf t)
7.2 Common terms query
common 区分常用(高频)词查询让我们可以通过cutoff_frequency来指定一个分界文档频率值,将搜索文本中的词分为高频词和低频词,低频词的重要性高于高频词,先对低频词进行搜索并计算所有匹配文档相关性得分;然后再搜索和高频词匹配的文档,这会搜到很多文档,但只对和低频词重叠的文档进行相关性得分计算(这可保证搜索精确度,同时大大提高搜索性能),和低频词累加作为文档得分。实际执行的搜索是 必须包含低频词 + 或包含高频词。
思考:这样处理下,如果用户输入的都是高频词如 “to be or not to be”结果会是怎样的?你希望是怎样的?
优化:如果都是高频词,那就对这些词进行and 查询。
进一步优化:让用户可以自己定对高频词做and/or 操作,自己定对低频词进行and/or 操作;或指定最少得多少个同时匹配
示例1:
GET /_search { "query": { "common": { "message": { "query": "this is bonsai cool", "cutoff_frequency": 0.001 } } } }
说明:
cutoff_frequency : 值大于1表示文档数,0-1.0表示占比。 此处界定 文档频率大于 0.1%的词为高频词。
示例2:
GET /_search { "query": { "common": { "body": { "query": "nelly the elephant as a cartoon", "cutoff_frequency": 0.001, "low_freq_operator": "and" } } } }
说明:low_freq_operator指定对低频词做与操作
可用参数:minimum_should_match (high_freq, low_freq), low_freq_operator (default “or”) and high_freq_operator (default “or”)、 boost and analyzer
示例3:
GET /_search { "query": { "common": { "body": { "query": "nelly the elephant as a cartoon", "cutoff_frequency": 0.001, "minimum_should_match": 2 } } } }
示例4:
GET /_search { "query": { "common": { "body": { "query": "nelly the elephant not as a cartoon", "cutoff_frequency": 0.001, "minimum_should_match": { "low_freq" : 2, "high_freq" : 3 } } } } }
示例5:
query_string 查询,让我们可以直接用lucene查询语法写一个查询串进行查询,ES中接到请求后,通过查询解析器解析查询串生成对应的查询。使用它要求掌握lucene的查询语法。
示例1:指定单个字段查询
-
- GET /_search
- {
- "query": {
- "query_string" : {
- "default_field" : "content",
- "query" : "this AND that OR thus"
- }
- }
- }
示例2:指定多字段通配符查询
-
- GET /_search
- {
- "query": {
- "query_string" : {
- "fields" : ["content", "name.*^5"],
- "query" : "this AND that OR thus"
- }
- }
- }
可与query同用的参数,如 default_field、fields,及query 串的语法请参考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
Term 词项:
单个词项的表示: 电脑
短语的表示: "联想笔记本电脑"
Field 字段:
字段名:
示例: name:“联想笔记本电脑” AND type:电脑
如果name是默认字段,则可写成: “联想笔记本电脑” AND type:电脑
如果查询串是:type:电脑 计算机 手机
注意:只有第一个是type的值,后两个则是使用默认字段。
Term Modifiers 词项修饰符:
simple_query_string 查同 query_string 查询一样用lucene查询语法写查询串,较query_string不同的地方:更小的语法集;查询串有错误,它会忽略错误的部分,不抛出错误。更适合给用户使用。
示例:
GET /_search { "query": { "simple_query_string" : { "query": "\"fried eggs\" +(eggplant | potato) -frittata", "fields": ["title^5", "body"], "default_operator": "and" } } }
语法请参考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html
官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/term-level-queries.html
11.1 Term query
term 查询用于查询指定字段包含某个词项的文档。
示例1:
POST _search { "query": { "term" : { "user" : "Kimchy" } } }
示例2:加权重
GET _search { "query": { "bool": { "should": [ { "term": { "status": { "value": "urgent", "boost": 2 } } }, { "term": { "status": "normal" } } ] } } }
11.2 Terms query
terms 查询用于查询指定字段包含某些词项的文档。
GET /_search { "query": { "terms" : { "user" : ["kimchy", "elasticsearch"]} } }
Terms 查询支持嵌套查询的方式来获得查询词项,相当于 in (select term from other)
示例1:Terms query 嵌套查询示例
PUT /users/_doc/2 { "followers" : ["1", "3"] } PUT /tweets/_doc/1 { "user" : "1" } GET /tweets/_search { "query": { "terms": { "user": { "index": "users", "type": "_doc", "id": "2", "path": "followers" } } } }
查询结果:
-
- {
- "took": 14,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 1,
- "max_score": 1,
- "hits": [
- {
- "_index": "tweets",
- "_type": "_doc",
- "_id": "1",
- "_score": 1,
- "_source": {
- "user": "1"
- }
- }
- ]
- }
- }
嵌套查询可用参数说明:
11.3 range query
范围查询示例1:
-
- GET _search
- {
- "query": {
- "range" : {
- "age" : {
- "gte" : 10,
- "lte" : 20,
- "boost" : 2.0
- }
- }
- }
- }
范围查询示例2:
GET _search { "query": { "range" : { "date" : { "gte" : "now-1d/d", "lt" : "now/d" } } } }
范围查询示例3:
GET _search { "query": { "range" : { "born" : { "gte": "01/01/2012", "lte": "2013", "format": "dd/MM/yyyy||yyyy" } } } }
范围查询参数说明:
范围查询时间舍入 ||说明:
时间数学计算规则请参考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#date-math
11.4 exists query
查询指定字段值不为空的文档。相当 SQL 中的 column is not null
GET /_search { "query": { "exists" : { "field" : "user" } } }
查询指定字段值为空的文档
GET /_search { "query": { "bool": { "must_not": { "exists": { "field": "user" } } } } }
11.5 prefix query 词项前缀查询
示例1:
GET /_search { "query": { "prefix" : { "user" : "ki" } } }
示例2:加权
GET /_search { "query": { "prefix" : { "user" : { "value" : "ki", "boost" : 2.0 } } } }
11.6 wildcard query 通配符查询: ? *
示例1:
GET /_search { "query": { "wildcard" : { "user" : "ki*y" } } }
示例2:加权
GET /_search { "query": { "wildcard": { "user": { "value": "ki*y", "boost": 2 } } }}
11.7 regexp query 正则查询
示例1:
GET /_search { "query": { "regexp":{ "name.first": "s.*y" } } }
示例2:加权
GET /_search { "query": { "regexp":{ "name.first":{ "value":"s.*y", "boost":1.2 } } } }
正则语法请参考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#regexp-syntax
11.8 fuzzy query 模糊查询
示例1:
GET /_search { "query": { "fuzzy" : { "user" : "ki" } } }
示例2:
GET /_search { "query": { "fuzzy" : { "user" : { "value": "ki", "boost": 1.0, "fuzziness": 2, "prefix_length": 0, "max_expansions": 100 } } } }
11.9 type query mapping type 查询
GET /_search { "query": { "type" : { "value" : "_doc" } } }
11.10 ids query 根据文档id查询
GET /_search { "query": { "ids" : { "type" : "_doc", "values" : ["1", "4", "100"] } } }
官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/compound-queries.html
12.1 Constant Score query
用来包装另一个查询,将查询匹配的文档的评分设为一个常值。
GET /_search { "query": { "constant_score" : { "filter" : { "term" : { "user" : "kimchy"} }, "boost" : 1.2 } } }
12.2 Bool query
Bool 查询用bool操作来组合多个查询字句为一个查询。 可用的关键字:
示例:
POST _search { "query": { "bool" : { "must" : { "term" : { "user" : "kimchy" } }, "filter": { "term" : { "tag" : "tech" } }, "must_not" : { "range" : { "age" : { "gte" : 10, "lte" : 20 } } }, "should" : [ { "term" : { "tag" : "wow" } }, { "term" : { "tag" : "elasticsearch" } } ], "minimum_should_match" : 1, "boost" : 1.0 } } }
说明:should满足一个或者两个或者都不满足
转自:推荐博客地址
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。