赞
踩
定义:
∬ D f ( x , y ) d σ = lim λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i \iint\limits_{D}f(x,y)d \sigma=\lim\limits_{\lambda \to 0}\sum\limits_{i=1}^{n}f(x_{i},y_{i})\Delta \sigma_{i} D∬f(x,y)dσ=λ→0limi=1∑nf(xi,yi)Δσi
二重积分 ∬ D f ( x , y ) d σ
性质1(不等式):
性质2(中值定理):设函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上连续, S S S为区域 D D D的面积,则在 D D D上至少存在一点 ( ξ , η ) (\xi ,\eta ) (ξ,η),使得
∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ S \iint\limits_{D}f(x,y)d \sigma=f(\xi ,\eta )\cdot S D∬f(x,y)dσ=f(ξ,η)⋅S
先 y y y后 x x x
∬ D f ( x , y ) d σ = ∫ a b d x ∫ ϕ 2 ( x ) ϕ 1 ( x ) f ( x , y ) d y \iint\limits_{D}f(x,y)d \sigma=\int_{a}^{b}dx \int_{\phi_{2}(x)}^{\phi_{1}(x)}f(x,y)dy D∬f(x,y)dσ=∫abdx∫ϕ2(x)ϕ1(x)f(x,y)dy
先 x x x后 y y y
∬ D f ( x , y ) d σ = ∫ c d d y ∫ ψ 2 ( y ) ψ 1 ( y ) f ( x , y ) d x \iint\limits_{D}f(x,y)d \sigma=\int_{c}^{d}dy \int_{\psi _{2}(y)}^{\psi_{1}(y)}f(x,y)dx D∬f(x,y)dσ=∫cddy∫ψ2(y)ψ1(y)f(x,y)dx
先 ρ \rho ρ后 θ \theta θ
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ ϕ 1 ( θ ) ϕ 2 ( θ ) f ( ρ cos θ , ρ sin θ ) ρ d ρ \iint\limits_{D}f(x,y)d \sigma=\int_{\alpha}^{\beta}d \theta \int_{\phi_{1}(\theta )}^{\phi_{2}(\theta )}f(\rho \cos \theta ,\rho \sin \theta )\rho d \rho D∬f(x,y)dσ=∫αβdθ∫ϕ1(θ)ϕ2(θ)f(ρcosθ,ρsinθ)ρdρ
常用于相同 θ \theta θ对应的不同 ρ \rho ρ
适合用极坐标计算的二重积分的特征
- 适合用极坐标计算的被积函数
f ( x 2 + y 2 ) , f ( y x ) , f ( x y ) f(\sqrt{x^{2}+y^{2}}),f(\frac{y}{x}),f(\frac{x}{y}) f(x2+y2 ),f(xy),f(yx)- 适合用极坐标的积分域
x 2 + y 2 ≤ R 2 r 2 ≤ x 2 + y 2 ≤ R 2 x 2 + y 2 ≤ 2 a x x 2 + y 2 ≤ 2 b yx2r2≤x2x2x2+y2≤R2+y2≤R2+y2≤2ax+y2≤2byx2r2≤x2x2x2+y2≤R2+y2≤R2+y2≤2ax+y2≤2by
如果圆心既不在坐标原点也不在坐标轴,考虑平移+极坐标,即
令 x − x 0 = ρ sin θ , y − y 0 = ρ sin θ 令x-x_{0}=\rho \sin \theta ,y-y_{0}=\rho \sin \theta 令x−x0=ρsinθ,y−y0=ρsinθ
则有
∫ 0 2 π d θ ∫ 0 R ( ) ρ d ρ \int_{0}^{2\pi}d \theta \int_{0}^{R}(\quad )\rho d \rho ∫02πdθ∫0R()ρdρ
若积分域 D D D关于 y y y轴对称,则
∬ D f ( x , y ) d σ = { 2 ∬ D x ≥ 0 f ( x , y ) d σ f ( − x , y ) = f ( x , y ) 0 f ( − x , y ) = − f ( x , y ) \iint\limits_{D}f(x,y)d \sigma=\left\{
若积分域 D D D关于 x x x轴对称,则
∬ D f ( x , y ) d σ = { 2 ∬ D y ≥ 0 f ( x , y ) d σ f ( x , − y ) = f ( x , y ) 0 f ( x , − y ) = − f ( x , y ) \iint\limits_{D}f(x,y)d \sigma=\left\{
若 D D D关于 y = x y=x y=x对称,则
∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint\limits_{D}f(x,y)d \sigma=\iint\limits_{D}f(y,x)d \sigma D∬f(x,y)dσ=D∬f(y,x)dσ
例1:交换累次积分 ∫ 0 1 d x ∫ x 2 2 − x f ( x , y ) d y
原式 = ∫ 0 1 d y ∫ 0 y f ( x , y ) d x + ∫ 1 2 d y ∫ 0 2 − y f ( x , y ) d x 原式=\int_{0}^{1}dy \int_{0}^{\sqrt{y}}f(x,y)dx+\int_{1}^{2}dy \int_{0}^{2-y}f(x,y)dx 原式=∫01dy∫0y f(x,y)dx+∫12dy∫02−yf(x,y)dx
例2:累次积分 ∫ 0 π 2 d θ ∫ 0 cos θ f ( ρ cos θ , ρ sin θ ) ρ d ρ
ρ = cos θ ⇒ ρ 2 = ρ cos θ ⇒ x 2 + y 2 = x ρ = 0 θ ∈ ( 0 , π 2 )
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。